Insights into bacterial diversity in industrial post-processing water from underground coal gasification (UCG) process

Author:

Jałowiecki Łukasz1,Borgulat Jacek1,Strugała-Wilczek Aleksandra2,Jastrzębski Jan3,Matejczyk Marek1,Płaza Grażyna4

Affiliation:

1. Institute for Ecology of Industrial Areas,Katowice, Poland

2. Department of Energy Saving and Air Protection, Central Mining Institute, Katowice, Poland

3. Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Poland

4. Silesian University of Technology, Poland

Abstract

This study represents the first culture-independent profiling of microbial diversity in post-processing wastewater from underground coal gasification (UCG) processes. Three types of post-processing wastewater, named W1, W2 and W3, were obtained from three UCG processes involving two types of coal and two gasification agents, namely oxygen-enriched air and oxygen. Very high concentrations of BTEX (benzene, toluene, ethylbenzene, xylene), polyaromatic hydrocarbons (PAHs), and phenol were detected in the wastewater, classifying it into the fifth toxicity class, indicating very high acute toxicity. The values for the Shannon (H), Ace and Chao1 indices in W2 were the lowest compared to their values in W1 and W3. The dominate phyla were Proteobacteria, contributing 84.64% and 77.92% in W1 and W3, respectively, while Firmicutes dominated in W2 with a contribution of 66.85%. At the class level, Gammaproteobacteria and Alphaproteobacteria were predominant in W1 and W3, while Bacilli and Actinobacteria were predominant in W2. Among Bacilli, the Paenibacillus and Bacillus genera were the most numerous. Our results suggest that the main differentiating factor of the bacterial structure and diversity in the wastewater could be the gasification agent. These findings provide new insights into the shifting patterns of dominant bacteria in post-processing wastewater and illustrate the spread of bacteria in industrial contaminated wastewater.

Publisher

Polish Academy of Sciences Chancellery

Reference1 articles.

1. Bassin, J.; Rachid, C.; Vilela, C. Cao, S.; Peixoto, R. & Dezotti, M. (2017). Revealing the bacterial profile of an anoxic-aerobic moving-bed biofilm reactor system treating a chemical industry wastewater, International Biodeterioration & Biodegradation, 120, pp. 152–160. DOI:10.1016/j.ibiod.2017.01.036 Bedogni, G.L.; Massello, F. L.; Giaveno, A.; Donati, E.R. & Urbieta, M.S. (2020). A deeper look into the biodiversity of the extremely acidic copahue volcano - Río Agrio system in Neuquén, Argentina, Microorganisms, 8, 58. DOI:10.3390/microorganisms8010058 Chen, T.; Wu, Y.; Wang, J. & Philippe, C. F. X. (2022). Assessing the biodegradation of btex and stress response in a bio-permeable reactive barrier using compound-specific isotope analysis, International Journal of Environmental Research and Public Health, 19, 8800. DOI:10.3390/ijerph19148800 Fimlaid, K. A. & Shen, A. (2015). Diverse mechanisms regulate sporulation sigma factor activity in the Firmicutes, Current Opinion in Microbiology, 24, pp. 88-95. DOI:10.1016%2Fj.mib.2015.01.006 Gawroński, S., Łutczyk, G.; Szulc, W. & Rutkowska, B. (2022). Urban mining: Phytoextraction of noble and rare earth elements from urban soils, Archives of Environmental Protection, 48, 2, pp. 24-33. DOI:10.24425/aep.2022.140763 Grabowski, J., Korczak, K. & Tokarz, A. (2021). Aquatic risk assessment based on the results of research on mine waters as a part of a pilot underground coal gasification process, Process Safety and Environmental Protection, 148, pp. 548-558. DOI:10.1016/j.psep.2020.10.003 Grady, E.N., MacDonald, J., Richman, A. & Yuan, Z.C. (2016). Current knowledge and perspectives of Paenibacillus: a review. Microbial Cell Factories, 15, 203. DOI:10.1186/s12934-016-0603-7 Guisado, I.M., Purswani, J., Gonzales-Lopez, J. & Pozo, C. (2015). Physiological and genetic screening methods for isolation of methyl-tert-butyl-ether-degrading bacteria for bioremediation purposes, International Biodeterioration and Biodegradation, 97, pp. 67-74. DOI:10.1016/j.ibiod.2014.11.008 Jałowiecki, Ł., Borgulat, J.; Strugała-Wilczek, A., Glaser, M. & Płaza, G. (2024). Searching of phenol-degrading bacteria in raw wastewater from underground coal gasification process as suitable candidates in bioaugmentation approach, Journal of Ecological Engineering, 25, pp. 62–71. DOI:10.12911/22998993/176143 Jayapal, A., Chaterjee, T. & Sahariah, B.P. (2023). Bioremediation techniques for the treatment of mine tailings: A review, Soil Ecology Letters, 5, 220149. DOI:10.1007/s42832-022-0149-z Kamika, I., Azizi, S. & Tekere, M. (2016). Microbial profiling of South African acid mine water samples using next generation sequencing platform, Applied. Microbiology and Biotechnology, 100, pp.6069–6079. DOI:10.1007/s00253-016-7428-5 Kapusta, K. & Stańczyk, K. (2015). Chemical and toxicological evaluation of underground coal gasification (UCG) effluents. The coal rank effect, Ecotoxicology and Environmental Safety, 112, pp. 105– 113. DOI:10.1016/j.ecoenv.2014.10.038 Karn, S.K., Chakrabarti, S.K. & Reddy, M.S. (2011). Degradation of pentachlorophenol by Kocuria sp. CL2 isolated from secondary sludge of pulp and paper mill, Biodegradation, 22, pp. 63-69. DOI:10.1007/s10532-010-9376-6 Kochhar, N., Kavya, I.K., Shrivvastava, S., Ghosh, A., Rawat, V.S., Sodhi, K.K. & Kumar, M. (2022) Perspectives on the microorganisms of extreme environments and their applications, Current Research Microbial Sciences. 3, 100134. DOI:10.1016/j.crmicr.2022.100134 Liu, F., Hu, X., Zhao, X., Guo, H. & Zhao, Y. (2019). Microbial community structures’ response to seasonal variation in a full-scale municipal wastewater treatment plant, Environmental Engineering Science, 36, pp. 172-178. DOI:10.1089/ees.2018.0280 Luo, Z., Ma, J., Chen, F., Li, X., Zhang, Q. & Yang, Y. (2020). Adaptive development of soil bacterial communities to ecological processes caused by mining activities in the Loess Plateau, China, Microorganisms, 8, 477. DOI:10.3390/microorganisms8040477 Mauricio-Gutiérrez, A., Machorro-Velázquez R., Jiménez-Salgado, T.;Vázquez-Crúz C., Sánchez-Alonso, M.P. & Tapia-Hernández, A. (2020). Bacillus pumilus and Paenibacillus lautus effectivity in the process of biodegradation of diesel isolated from hydrocarbons contaminated agricultural soils, Archives of Environmental Protection, 46, 4, pp. 59–69. DOI:0.24425/aep.2020.135765 Muter, O. (2023). Current trends in bioaugmentation tools for bioremediation: A critical review of advances and knowledge gaps, Microorganisms, 11, 710. DOI:10.3390/microorganisms11030710 Nwankwegu, A.S., Zhang, L., Xie, D., Onwosi, C.O., Muhammad, W.I., Odoh, C.K., Sam, K. & Idenyi, J.N. (2022). Bioaugmentation as a green technology for hydrocarbon pollution remediation. Problems and prospects. Journal of Environmental Management, 304, 114313. DOI:10.1016/j.jenvman.2021.114313 Pankiewicz-Sperka, M., Kapusta, K., Basa, W. & Stolecka, K. (2021). Characteristics of water contaminants from underground coal gasification (UCG) process - effect of coal properties and gasification pressure, Energies, 14, 6533. DOI:10.3390/en14206533 Pankiewicz-Sperka, M., Stańczyk, K., Płaza, G., Kwaśniewska, J. & Nałęcz-Jawecki, G. (2014). Assessment of the chemical, microbiological and toxicological aspects pf post-processing water from underground coal gasification, Ecotoxicology and Environmental Safety, 108, pp. 294-301. DOI:10.1016/j.ecoenv.2014.06.036 Persoone, G., Marsalek, B., Blinova, I., Torokne, A., Zarina, D., Manusadzianas, L. (2003). A practical and user-friendly toxicity classification system with microbiotests for natural waters and wastewaters, Environmental Toxicology, 18, pp. 395–402. DOI:10.1002/tox.10141. Rappaport, H.B. & Oliverio, A.M. (2023). Extreme environments offer an unprecedent opportunity to understand microbial eukaryotic ecology, evolution, and genome biology, Nature Communication, 14, 4959. DOI:10.1038/s41467-023-40657-4 Sharma, S. & Bhattacharya, A. (2017) Drinking water contamination and treatment techniques. Appied Water Science 7, pp. 1043-1067. DOI:10.1007/s13201-016-0455-7 Smoliński, A.. Stańczyk, K.. Kapusta, K. & Howaniec, N. (2013). Analysis of the organic contaminants in the condensate produced in the in situ underground coal gasification process, Water Science and Technology, 67, pp. 644-650. DOI:10.2166/wst.2012.558 Thukral, A.K. (2017). A review on measurement of alpha diversity in biology, Agricultural Research Journal, 54, 1. DOI:10.5958/2395-146X.2017.00001.1 Timkina, E., Drabova, L., Palyova, A,, Rezanka, T., Matatkova, O. & Kolouchova, I. (2020). Kocuria strains from unique radon spring water from Jachymov Spa, Fermentation, 8, 35. DOI:10.3390/fermentation8010035 Wiatowski, M., Kapusta, K., Strugała-Wilczek, A., Stańczyk, K., Castro-Muñiz, A., Suárez-García F. & Paredes, J.I. (2023). Large-scale experimental simulations of in situ coal gasification in terms of process efficiency and physicochemical properties of process by-products, Energies, 16, 4455. DOI:10.3390/en16114455 Xu, B., Chen, L., Xing, B., Li, Z., Zhang, L., Yi, G., Huang, G. & Mohanty, M.K. (2017). Physicochemical properties of Hebi semi-coke from underground coal gasification and its adsorption for phenol, Process Safety Environmental Protection, 107, pp. 147–152. DOI:10.1016/j.psep.2017.02.007 Yang, Y., Wang, L., Xiang, F., Zhao, L. & Qiao, Z. (2020). Activated sludge microbial community and treatment performance of wastewater treatment plants in industrial and municipal zones, International Journal of Environmental Research and Public Health, 17, 436. DOI:10.3390/ijerph17020436 Zwain, H., Al-Marzook, F., Nile, B., Ali Jeddoa, Z., Atallah, A., Dahlan, I. & Hassan, W. (2021). Morphology analysis and microbial diversity in novel anaerobic baffled reactor treating recycled paper mill wastewater, Archives of Environmental Protection, 47, 4, pp. 9–17. DOI:10.24425/aep.2021.139498 Bassin, J.; Rachid, C.; Vilela, C. Cao, S.; Peixoto, R. & Dezotti, M. (2017). Revealing the bacterial profile of an anoxic-aerobic moving-bed biofilm reactor system treating a chemical industry wastewater, International Biodeterioration & Biodegradation, 120, pp. 152–160. DOI:10.1016/j.ibiod.2017.01.036 Bedogni, G.L.; Massello, F. L.; Giaveno, A.; Donati, E.R. & Urbieta, M.S. (2020). A deeper look into the biodiversity of the extremely acidic copahue volcano - Río Agrio system in Neuquén, Argentina, Microorganisms, 8, 58. DOI:10.3390/microorganisms8010058 Chen, T.; Wu, Y.; Wang, J. & Philippe, C. F. X. (2022). Assessing the biodegradation of btex and stress response in a bio-permeable reactive barrier using compound-specific isotope analysis, International Journal of Environmental Research and Public Health, 19, 8800. DOI:10.3390/ijerph19148800 Fimlaid, K. A. & Shen, A. (2015). Diverse mechanisms regulate sporulation sigma factor activity in the Firmicutes, Current Opinion in Microbiology, 24, pp. 88-95. DOI:10.1016%2Fj.mib.2015.01.006 Gawroński, S., Łutczyk, G.; Szulc, W. & Rutkowska, B. (2022). Urban mining: Phytoextraction of noble and rare earth elements from urban soils, Archives of Environmental Protection, 48, 2, pp. 24-33. DOI:10.24425/aep.2022.140763 Grabowski, J., Korczak, K. & Tokarz, A. (2021). Aquatic risk assessment based on the results of research on mine waters as a part of a pilot underground coal gasification process, Process Safety and Environmental Protection, 148, pp. 548-558. DOI:10.1016/j.psep.2020.10.003 Grady, E.N., MacDonald, J., Richman, A. & Yuan, Z.C. (2016). Current knowledge and perspectives of Paenibacillus: a review. Microbial Cell Factories, 15, 203. DOI:10.1186/s12934-016-0603-7 Guisado, I.M., Purswani, J., Gonzales-Lopez, J. & Pozo, C. (2015). Physiological and genetic screening methods for isolation of methyl-tert-butyl-ether-degrading bacteria for bioremediation purposes, International Biodeterioration and Biodegradation, 97, pp. 67-74. DOI:10.1016/j.ibiod.2014.11.008 Jałowiecki, Ł., Borgulat, J.; Strugała-Wilczek, A., Glaser, M. & Płaza, G. (2024). Searching of phenol-degrading bacteria in raw wastewater from underground coal gasification process as suitable candidates in bioaugmentation approach, Journal of Ecological Engineering, 25, pp. 62–71. DOI:10.12911/22998993/176143 Jayapal, A., Chaterjee, T. & Sahariah, B.P. (2023). Bioremediation techniques for the treatment of mine tailings: A review, Soil Ecology Letters, 5, 220149. DOI:10.1007/s42832-022-0149-z Kamika, I., Azizi, S. & Tekere, M. (2016). Microbial profiling of South African acid mine water samples using next generation sequencing platform, Applied. Microbiology and Biotechnology, 100, pp.6069–6079. DOI:10.1007/s00253-016-7428-5 Kapusta, K. & Stańczyk, K. (2015). Chemical and toxicological evaluation of underground coal gasification (UCG) effluents. The coal rank effect, Ecotoxicology and Environmental Safety, 112, pp. 105– 113. DOI:10.1016/j.ecoenv.2014.10.038 Karn, S.K., Chakrabarti, S.K. & Reddy, M.S. (2011). Degradation of pentachlorophenol by Kocuria sp. CL2 isolated from secondary sludge of pulp and paper mill, Biodegradation, 22, pp. 63-69. DOI:10.1007/s10532-010-9376-6 Kochhar, N., Kavya, I.K., Shrivvastava, S., Ghosh, A., Rawat, V.S., Sodhi, K.K. & Kumar, M. (2022) Perspectives on the microorganisms of extreme environments and their applications, Current Research Microbial Sciences. 3, 100134. DOI:10.1016/j.crmicr.2022.100134 Liu, F., Hu, X., Zhao, X., Guo, H. & Zhao, Y. (2019). Microbial community structures’ response to seasonal variation in a full-scale municipal wastewater treatment plant, Environmental Engineering Science, 36, pp. 172-178. DOI:10.1089/ees.2018.0280 Luo, Z., Ma, J., Chen, F., Li, X., Zhang, Q. & Yang, Y. (2020). Adaptive development of soil bacterial communities to ecological processes caused by mining activities in the Loess Plateau, China, Microorganisms, 8, 477. DOI:10.3390/microorganisms8040477 Mauricio-Gutiérrez, A., Machorro-Velázquez R., Jiménez-Salgado, T.;Vázquez-Crúz C., Sánchez-Alonso, M.P. & Tapia-Hernández, A. (2020). Bacillus pumilus and Paenibacillus lautus effectivity in the process of biodegradation of diesel isolated from hydrocarbons contaminated agricultural soils, Archives of Environmental Protection, 46, 4, pp. 59–69. DOI:0.24425/aep.2020.135765 Muter, O. (2023). Current trends in bioaugmentation tools for bioremediation: A critical review of advances and knowledge gaps, Microorganisms, 11, 710. DOI:10.3390/microorganisms11030710 Nwankwegu, A.S., Zhang, L., Xie, D., Onwosi, C.O., Muhammad, W.I., Odoh, C.K., Sam, K. & Idenyi, J.N. (2022). Bioaugmentation as a green technology for hydrocarbon pollution remediation. Problems and prospects. Journal of Environmental Management, 304, 114313. DOI:10.1016/j.jenvman.2021.114313 Pankiewicz-Sperka, M., Kapusta, K., Basa, W. & Stolecka, K. (2021). Characteristics of water contaminants from underground coal gasification (UCG) process - effect of coal properties and gasification pressure, Energies, 14, 6533. DOI:10.3390/en14206533 Pankiewicz-Sperka, M., Stańczyk, K., Płaza, G., Kwaśniewska, J. & Nałęcz-Jawecki, G. (2014). Assessment of the chemical, microbiological and toxicological aspects pf post-processing water from underground coal gasification, Ecotoxicology and Environmental Safety, 108, pp. 294-301. DOI:10.1016/j.ecoenv.2014.06.036 Persoone, G., Marsalek, B., Blinova, I., Torokne, A., Zarina, D., Manusadzianas, L. (2003). A practical and user-friendly toxicity classification system with microbiotests for natural waters and wastewaters, Environmental Toxicology, 18, pp. 395–402. DOI:10.1002/tox.10141. Rappaport, H.B. & Oliverio, A.M. (2023). Extreme environments offer an unprecedent opportunity to understand microbial eukaryotic ecology, evolution, and genome biology, Nature Communication, 14, 4959. DOI:10.1038/s41467-023-40657-4 Sharma, S. & Bhattacharya, A. (2017) Drinking water contamination and treatment techniques. Appied Water Science 7, pp. 1043-1067. DOI:10.1007/s13201-016-0455-7 Smoliński, A.. Stańczyk, K.. Kapusta, K. & Howaniec, N. (2013). Analysis of the organic contaminants in the condensate produced in the in situ underground coal gasification process, Water Science and Technology, 67, pp. 644-650. DOI:10.2166/wst.2012.558 Thukral, A.K. (2017). A review on measurement of alpha diversity in biology, Agricultural Research Journal, 54, 1. DOI:10.5958/2395-146X.2017.00001.1 Timkina, E., Drabova, L., Palyova, A,, Rezanka, T., Matatkova, O. & Kolouchova, I. (2020). Kocuria strains from unique radon spring water from Jachymov Spa, Fermentation, 8, 35. DOI:10.3390/fermentation8010035 Wiatowski, M., Kapusta, K., Strugała-Wilczek, A., Stańczyk, K., Castro-Muñiz, A., Suárez-García F. & Paredes, J.I. (2023). Large-scale experimental simulations of in situ coal gasification in terms of process efficiency and physicochemical properties of process by-products, Energies, 16, 4455. DOI:10.3390/en16114455 Xu, B., Chen, L., Xing, B., Li, Z., Zhang, L., Yi, G., Huang, G. & Mohanty, M.K. (2017). Physicochemical properties of Hebi semi-coke from underground coal gasification and its adsorption for phenol, Process Safety Environmental Protection, 107, pp. 147–152. DOI:10.1016/j.psep.2017.02.007 Yang, Y., Wang, L., Xiang, F., Zhao, L. & Qiao, Z. (2020). Activated sludge microbial community and treatment performance of wastewater treatment plants in industrial and municipal zones, International Journal of Environmental Research and Public Health, 17, 436. DOI:10.3390/ijerph17020436 Zwain, H., Al-Marzook, F., Nile, B., Ali Jeddoa, Z., Atallah, A., Dahlan, I. & Hassan, W. (2021). Morphology analysis and microbial diversity in novel anaerobic baffled reactor treating recycled paper mill wastewater, Archives of Environmental Protection, 47, 4, pp. 9–17. DOI:10.24425/aep.2021.139498

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3