Enhanced Vascular Biocompatibility and Remodeling of Decellularized and Secured Xenogeneic/Allogeneic Matrices in a Porcine Model

Author:

van Steenberghe Mathieu,Schubert Thomas,Bouzin Caroline,Caravaggio Carlo,Guiot Yves,Xhema Daela,Gianello Pierre

Abstract

Background/Purpose: Calcifications and absence of growth potential are the major drawbacks of glutaraldehyde-treated prosthesis. Decellularized and secured xeno-/allogeneic matrices were assessed in a preclinical porcine model for biocompatibility and vascular remodeling in comparison to glutaraldehyde-fixed bovine pericardium (GBP; control). Methods: Native human (fascia lata, pericardium) and porcine tissues (peritoneum) were used and treated. In vitro, biopsies were performed before and after treatment to assess decellularization (hematoxylin and eosin/DAPI). In vivo, each decellularized and control tissue sample was implanted subcutaneously in 4 mini-pigs. In addition, 9 mini-pigs received a patch or a tubularized prosthesis interposition on the carotid artery or abdominal aorta of decellularized (D) human fascia lata (DHFL; n = 4), human pericardium (DHP; n = 9), porcine peritoneum (DPPt; n = 7), and control tissue (GBP: n = 3). Arteries were harvested after 1 month and subcutaneous samples after 15–30 days. Tissues were processed for hematoxylin and eosin/von Kossa staining and immunohistochemistry for CD31, alpha-smooth muscle actin, CD3, and CD68. Histomorphometry was achieved by point counting. Results: A 95% decellularization was confirmed for DHP and DPPt, and to a lower degree for DHFL. In the subcutaneous protocol, CD3 infiltration was significantly higher at day 30 in GBP and DHFL, and CD68 infiltration was significantly higher for GBP (p < 0.05). In intravascular study, no deaths, aneurysms, or pseudoaneurysms were observed. Inflammatory reaction was significantly higher for DHFL and GBP (p < 0.05), while it was lower and comparable for DHP/DPPt. DHP and DPPt showed deeper recellularization, and a new arterial wall was characterized. Conclusions: In a preclinical model, DPPt and DHP offered better results than conventional commercialized GBP for biocompatibility and vascular remodeling.

Publisher

S. Karger AG

Subject

Surgery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3