Relative Strengths and Regulation of Different Promoter-Associated Sequences for Various blaSHV Genes and Their Relationships to β-Lactam Resistance

Author:

Zhai Yao,Zhang Zhao,Wang Zhanwei,Chen Yusheng,Wang Qi,Lv Yuan,Yang Jingping,Zhao Tong,Guo Yatao,Gao Zhancheng

Abstract

<b><i>Aims:</i></b> This work investigated the relative strengths of different <i>bla</i><sub>SHV</sub> promoter-associated sequences and their regulation function in <i>bla</i><sub>SHV</sub> expression and β-lactam resistance. <b><i>Methods:</i></b> Recombinant plasmids with the promoter-associated sequences (P-W, P-S, P-IS, and P-WPD), <i>tac</i> promoter, and combined fragments of promoter and <i>bla</i><sub>SHV</sub> were separately constructed and transformed into <i>Escherichia coli</i> DH5α. The relative strengths of the promoters indicated by the intensities of green fluorescent protein and the mRNA expression levels of <i>bla</i><sub>SHV</sub> were compared. The minimum inhibitory concentration and extended spectrum β-lactamase phenotypes were evaluated. <b><i>Results:</i></b> The relative strengths were ranked as P-<i>tac</i> > P-WPD > P-IS > P-S > P-W. The mRNA expression and β-lactam resistance levels of the different promoter-associated sequence groups were generally consistent with the strength rank, but the extent of <i>gfp</i> and <i>bla</i><sub>SHV</sub> mRNA levels varied significantly in each group. The β-lactam resistance levels were inconsistent with the strength rank in certain <i>bla</i><sub>SHV</sub> groups. In relation to the different promoter-associated sequences,<i> bla</i><sub>SHV-ESBLs</sub> displayed significantly different change modes of β-lactam resistance compared with <i>bla</i><sub>SHV-non-ESBLs</sub>. <b><i>Conclusion:</i></b> The mRNA expression and β-lactam resistance of the <i>bla</i><sub>SHV</sub> showed consistencies and inconsistencies with the strengths of the promoter-associated sequences. The mechanisms accounting for these discrepancies need further investigation.

Publisher

S. Karger AG

Subject

Molecular Biology,Applied Microbiology and Biotechnology,Microbiology,Biotechnology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3