Programmed Cell Death Genes Are Linked to Elevated Creatine Kinase Levels in Unhealthy Male Nonagenarians

Author:

Kim Sangkyu,Simon Eric,Myers Leann,Hamm L. Lee,Jazwinski S. Michal

Abstract

Declining health in the oldest-old takes an energy toll for the simple maintenance of body functions. The underlying mechanisms, however, differ in males and females. In females, the declines are explained by loss of muscle mass; but this is not the case in males, in whom they are associated with increased levels of circulating creatine kinase. This relationship raises the possibility that muscle damage rather than muscle loss is the cause of the increased energy demands of unhealthy aging in males. We have now examined factors that contribute to the increase in creatine kinase. Much of it (60%) can be explained by a history of cardiac problems and lower kidney function, while being mitigated by moderate physical activity, reinforcing the notion that tissue damage is a likely source. In a search for genetic risk factors associated with elevated creatine kinase, the Ku70 gene XRCC6 and the ceramide synthase gene LASS1 were investigated because of their roles in telomere length and longevity and healthy aging, respectively. Single nucleotide polymorphisms in these two genes were independently associated with creatine kinase levels. The XRCC6 variant was epistatic to one of the LASS1 variants but not to the other. These gene variants have potential regulatory activity. Ku70 is an inhibitor of the proapoptotic Bax, while the product of Lass1, ceramide, operates in both caspase-dependent and -independent pathways of programmed cell death, providing a potential cellular mechanism for the effects of these genes on tissue damage and circulating creatine kinase.

Publisher

S. Karger AG

Subject

Geriatrics and Gerontology,Ageing

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3