The Effects of Polyadenylation Status on MPFs During In Vitro Porcine Oocyte Maturation

Author:

Liu Huiyu,Gao Yan,Zhai Bo,Jiang Hao,Ding Yu,Zhang Lianjiang,Li Changhong,Deng Qiong,Yu Xianfeng,Zhang Jiabao

Abstract

Aims: This study aims to clarify the effects of polyadenylation status on M-phase promoting factors (MPFs) during in vitro porcine oocyte maturation. Methods: In this study, porcine follicular oocytes from large follicles (> 5 millimeter (mm)) and small follicles (< 3 mm) were examined at different follicular developmental stages. The polyadenylation of maternal mRNAs was inhibited by the addition of 3'-deoxyadenosine (3'-da) during the germinal vesicle (GV)(0 h), GV breakdown (GVBD)(18 h), metaphase I (MI)(28 h), and metaphase II (MII) (44 h) stages. In addition, the expression levels and poly-(A) tail lengths of the maternal mRNAs Cyclin B1 and cell division cycle 2 (Cdc2) were determined by real-time quantitative PCR. Immunofluorescence was used to assess spindle formation and chromosome alignment in the examined oocytes. Results: In large-follicle oocytes, the effects of inhibiting polyadenylation caused the percentage of mature to be significantly lower for the treated group than for the untreated group (p < 0.01). 3'-da can significantly improve the rate of small oocyte maturation in vitro and inhibits Cdc2 polyadenylation. Cyclin B1 plays a significant role in promoting the maturation of large-follicle oocytes. Polyadenylation contributes to the formation of dominant follicles and facilitates the selection of dominant follicles. However, the inhibition of adenylation affected spindle formation-related propulsion and chromosome alignment in both large- and small-follicle oocytes. The first polar body could not be extruded in certain large follicles. Conclusions: 3'-da can significantly improve the rate of small oocyte maturation in vitro, but it can also affect spindle formation-related propulsion and chromosome alignment.

Publisher

S. Karger AG

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3