Anti-Inflammatory Effect of Alpha7 Nicotinic Acetylcholine Receptor Modulators on BV2 Cells

Author:

Aripaka Sanjay S.,Mikkelsen Jens D.

Abstract

<b><i>Objective:</i></b> The development of neuroinflammation shares numerous risk factors and involves many complex interactions which contribute to disease pathology. An important cell type in neuroinflammation is the active microglia cell – the resident immune cell of the CNS. There is increasing need to understand how these pathways related to neuroinflammation work and how they can be regulated. Nicotinic acetylcholine receptors (nAChRs) are pentameric ligand-gated receptors and widely distributed in the brain. The α7 nAChR is a penta-homomeric receptor and is one of the nAChRs expressed in microglia. This study was first designed to characterize the effects of lipopolysaccharide (LPS) on BV2 culture cells, a cell line of murine microglia origin, on release of inflammatory markers and to characterize the inhibitory effects of α7 nAChR modulators in these cells. <b><i>Methods:</i></b> First, the BV2 cell cultures were functionally validated by exposing them to LPS for 4–24 h and then examining the release of tumor necrosis factor-alpha (TNF-α) using ELISA and nitric oxide (NO) release using the Griess assay, respectively. Next, α7 nAChR modulators with different pharmacological profiles were applied dose-dependently to study their effects on LPS-induced release of NO and TNF-α. <b><i>Results:</i></b> The time-course and dose-response curve revealed that LPS dose-dependently activated (EC50 = 2.5 ng/mL) BV2 cells releasing TNF-α at 4 h, followed by release of NO that occurred first at 8-h time point. The α7 nAChR subunit mRNA was identified in the BV2 cells. The pharmacology studies showed the α7 nAChR selective modulators NS6740 and TQS reduced NO and cytokine release from BV2 cell cultures. <b><i>Conclusion:</i></b> We here identified the dose- and time-dependent effects of LPS in BV2 cell cultures on several inflammatory readouts and showed that α7 nAChR modulators with little or no ion channel activity inhibited this anti-inflammatory mechanism.

Publisher

S. Karger AG

Subject

Endocrine and Autonomic Systems,Neurology,Endocrinology,Immunology

Reference22 articles.

1. Wong D, Dorovini-Zis K, Vincent SR. Cytokines, nitric oxide, and cGMP modulate the permeability of an in vitro model of the human blood-brain barrier. Exp Neurol. 2004;190(2):446–55.

2. Rosas-Ballina M, Ochani M, Parrish WR, Ochani K, Harris YT, Huston JM, et al. Splenic nerve is required for cholinergic anti-inflammatory pathway control of TNF in endotoxemia. Proc Natl Acad Sci U S A. 2008;105(31):11008–13.

3. Lull ME, Block ML. Microglial activation and chronic neurodegeneration. Neurotherapeutics. 2010;7(4):354–65.

4. Wang H, Yu M, Ochani M, Amella CA, Tanovic M, Susarla S, et al. Nicotinic acetylcholine receptor alpha7 subunit is an essential regulator of inflammation. Nature. 2002;421(6921):384–8.

5. Wang H, Liao H, Ochani M, Justiniani M, Lin X, Yang L, et al. Cholinergic agonists inhibit HMGB1 release and improve survival in experimental sepsis. Nat Med. 2004;10(11):1216–21.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3