Prediction of Motor Outcome of Stroke Patients Using a Deep Learning Algorithm with Brain MRI as Input Data

Author:

Shin HyunkwangORCID,Kim Jeoung KunORCID,Choo Yoo JinORCID,Choi Gyu SangORCID,Chang Min Cheol

Abstract

<b><i>Background:</i></b> Deep learning techniques can outperform traditional machine learning techniques and learn from unstructured and perceptual data, such as images and languages. We evaluated whether a convolutional neural network (CNN) model using whole axial brain T2-weighted magnetic resonance (MR) images as input data can help predict motor outcomes of the upper and lower limbs at the chronic stage in stroke patients. <b><i>Methods:</i></b> We collected MR images taken at the early stage of stroke in 1,233 consecutive stroke patients. We categorized modified Brunnstrom classification (MBC) scores of ≥5 and functional ambulatory category (FAC) scores of ≥4 at 6 months after stroke as favorable outcomes in the upper and lower limbs, respectively, and MBC scores of &#x3c;5 and FAC scores of &#x3c;4 as poor outcomes. We applied a CNN to train the image data. Of the 1,233 patients, 70% (863 patients) were randomly selected for the training set and the remaining 30% (370 patients) were assigned to the validation set. <b><i>Results:</i></b> In the prediction of upper limb motor function on the validation dataset, the area under the curve (AUC) was 0.768, and for lower limb motor function, the AUC was 0.828. <b><i>Conclusion:</i></b> We showed that a CNN model trained using whole-brain axial T2-weighted MR images of stroke patients would help predict upper and lower limb motor function at the chronic stage.

Publisher

S. Karger AG

Subject

Neurology (clinical),Neurology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3