The Genetics and Biology of FOXL2

Author:

Tucker Elena J.

Abstract

<i>FOXL2</i> encodes a transcription factor that regulates a wide array of target genes including those involved in sex development, eyelid development, ovarian function and maintenance, genomic integrity as well as cellular pathways such as cell-cycle progression, proliferation, and apoptosis. The role of <i>FOXL2</i> has been widely studied in humans and animals. Consistent with its role in ovarian and eyelid development, over 100 germline variants in <i>FOXL2</i> are associated with blepharophimosis, ptosis, and epicanthus inversus syndrome in humans, an autosomal dominant condition characterised by ovarian dysgenesis/premature ovarian insufficiency, as well as defective eyelid development. Reflecting its role in apoptosis and proliferation, a somatic variant in <i>FOXL2</i> causes adult granulosa cell tumours in humans. Despite being widely studied and having clear relevance to human disease, much remains unknown about the genes FOXL2 regulates and how it exerts its wide-reaching effect on multiple organs. This review focuses on <i>FOXL2</i> and its varied roles as a transcription factor in sex determination, ovarian maintenance and function, eyelid development, genome integrity, and cell regulation, followed by discussion of the in vivo disruption of <i>FOXL2</i> in humans and other species.

Publisher

S. Karger AG

Subject

Developmental Biology,Embryology,Endocrinology, Diabetes and Metabolism

Reference81 articles.

1. Asdell SA. The genetic sex of intersexual goats and a probable linkage with the gene for hornlessness. Science. 1944;99:124.

2. Baron D, Cocquet J, Xia X, Fellous M, Guiguen Y, Veitia RA. An evolutionary and functional analysis of FoxL2 in rainbow trout gonad differentiation. J Mol Endocrinol. 2004;33:705–15.

3. Bellessort B, Bachelot A, Heude É, Alfama G, Fontaine A, Le Cardinal M, et al. Role of Foxl2 in uterine maturation and function. Hum Mol Genet. 2015;24:3092–103.

4. Benayoun BA, Georges AB, L'Hôte D, Andersson N, Dipietromaria A, Todeschini AL, et al. Transcription factor FOXL2 protects granulosa cells from stress and delays cell cycle: role of its regulation by the SIRT1 deacetylase. Hum Mol Genet. 2011;20:1673–86.

5. Bertho S, Pasquier J, Pan Q, Le Trionnaire G, Bobe J, Postlethwait JH, et al. Foxl2 and its relatives are evolutionary conserved players in gonadal sex differentiation. Sex Dev. 2016;10:111–29.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3