Luteolin Attenuates Foam Cell Formation and Apoptosis in Ox-LDL-Stimulated Macrophages by Enhancing Autophagy

Author:

Zhang Bu-Chun,Zhang Cong-Wei,Wang Cheng,Pan De-Feng,Xu Tong-Da,Li Dong-Ye

Abstract

Background: Our previous studies demonstrated that luteolin, which is rich in flavones, has various biological properties and can exert anti-oxidant, anti-inflammatory and anti-apoptotic activities. However, its effect on ox-LDL-induced macrophage lipid accumulation and apoptosis has not been revealed. Aims: This study aimed to explore the role of luteolin in ox-LDL-induced macrophage-derived foam cell formation and apoptosis and to delineate the underlying mechanism. Methods: Murine RAW264.7 cells were stimulated with oxidized low-density lipoprotein (ox-LDL) (50 µg/ml) for 24 h and then pretreated with 25 µM luteolin for another 24 h. The effects of luteolin on lipid accumulation in RAW264.7 cells induced by ox-LDL were assayed using Oil red O staining and high performance liquid chromatography (HPLC). Apoptosis was confirmed by acridine orange/ethidium bromide (AO/EB) staining, flow cytometric analysis and the TUNEL assay. Immunofluorescence, Western blot and monodansylcadaverine (MDC) staining analyses were then used to further investigate the molecular mechanisms by which luteolin protects macrophages from ox-LDL-induced foam cell formation and apoptosis. 3-Methyladenine (3-MA), an autophagy inhibitor, was used as a positive control. Results: Treatment with 25 µM luteolin not only significantly attenuated ox-LDL-induced macrophage lipid accumulation but also decreased the apoptotic rate of RAW264.7 cells, the number of TUNEL-positive macrophages and the expression of Bax, Bak, cleaved caspase-9 and cleaved caspase-3. In addition, luteolin pretreatment significantly increased autophagosome formation and Beclin-1 activity, thus increasing the ratio of LC3-II/LC3-I. Moreover, these effects were abolished by 3-MA. Conclusions: Taken together, these results highlight that luteolin treatment attenuates foam cell formation and macrophage apoptosis by promoting autophagy and provide new insights into the molecular mechanism of luteolin and its therapeutic potential in the treatment of atherosclerosis.

Publisher

S. Karger AG

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3