Targeting Dynamin 2 as a Novel Pathway to Inhibit Cardiomyocyte Apoptosis Following Oxidative Stress

Author:

Gao Danchen,Yang Jian,Wu Yutao,Wang Qiwen,Wang Qiaoling,Lai En Yin,Zhu Jianhua

Abstract

Background/Aims: Inhibition of Drp-1-mediated mitochondrial fission limits reactive oxygen species (ROS) production and apoptosis in cardiomyocytes subjected to ischemia/reperfusion injury. It remains unknown if Dynamin 2 inhibition results in similar protective effects. Here we studied the role of Dynamin 2 in cardiomyocyte oxidative stress-induced apoptosis and ROS production. Methods: The effect of lentiviral shRNA (lv5-shRNA) mediated Dynamin 2 knockdown on apopotosis, mitochondria, and ROS production were studied in neonatal mouse cardiomycytes, which were further treated with either selective Drp1 inhibitor mdivi-1 or the Dynamin 2/Drp1 inhibitor Dynasore. Apoptosis was evaluated by flow cytometry. Mitochondrial morphology and transmembrane potential (ΔΨm) were studied by confocal microscopy, and ROS production was detected by dichlorofluorescein diacetate. Results: Inhibition of Drp1 and Dynamin 2 protected against mitochondrial fragmentation, maintained ΔΨm, attenuated cellular ROS production and limited apoptosis. Moreover, Lv5-shRNA mediated knockdown of Dynamin 2 alleviated mitochondrial fragmentation, and reduced both ROS production and oxidative stress-induced apoptosis. The protective effects of Dynamin 2 knockdown were enhanced by Dynasore, indicating an added benefit. Conclusions: Oxidative stress-induced apoptosis and ROS production are attenuated by not only Drp1 inhibition but also Dynamin 2 inhibition, implicating Dynamin 2 as a mediator of oxidative stress in cardiomyocytes.

Publisher

S. Karger AG

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3