Propofol Through Upregulating Caveolin-3 Attenuates Post-Hypoxic Mitochondrial Damage and Cell Death in H9C2 Cardiomyocytes During Hyperglycemia

Author:

Deng Fan,Wang Shuang,Zhang Liangqing,Xie Xiang,Cai Shuyun,Li Haobo,Xie Gui-ling,Miao Hui-Lai,Yang Changmin,Liu Xin,Xia Zhengyuan

Abstract

Background/Aims: Hearts from diabetic subjects are susceptible to myocardial ischemia reperfusion (I/R) injury. Propofol has been shown to protect against myocardial I/R injury due to its antioxidant properties while the underlying mechanism remained incompletely understood. Thus, this study aimed to determine whether or not propofol could attenuate myocardial I/R injury by attenuating mitochondrial dysfunction/damage through upregulating Caveolin (Cav)-3 under hyperglycemia. Methods: Cultured rat cardiomyocyte H9C2 cells were subjected to hypoxia/reoxygenation (H/R) in the absence or presence of propofol under high glucose (HG), and cell viability, lactate dehydrogenase (LDH) and mitochondrial viability as well as creatine kinase-MB (CK-MB), cardiac troponin I (cTnI) and intracellular adenosine triphosphate (ATP) content were measured with colorimetric Enzyme-Linked Immunosorbent Assays. Intracellular levels of oxidative stress was assessed using 2,7-dichlorodihydrofluorescein diacetate (DCF-DA) fluorescent staining and mitochondrial-dependent apoptosis was assessed by detecting mitochondrial membrane potential and the activation of apoptotic caspases 3 and 9. Results: Exposure of cells to HG without or with H/R both significantly increased cell injury, cell apoptosis and enhanced oxidative stress that were associated with mitochondrial dysfunction and decreased Cav-3 protein expression. All these changes were further exacerbated following H/R under HG. Administration of propofol at concentrations from 12.5 to 50 µM but not 100 µM significantly attenuated H/R injury that was associated with increased Cav-3 expression and activation of the prosurvival proteins Akt and STAT3 with the optimal protective effects seen at 50 µM of propofol (P25). The beneficial effects of propofol(P25) were abrogated by Cav-3 disruption with β-methyl-cyclodextrin. Conclusion: Propofol counteracts cardiomyocyte H/R injury by attenuating mitochondrial damage and improving mitochondrial biogenesis through upregulating Cav-3 during hyperglycemia.

Publisher

S. Karger AG

Subject

Physiology

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3