Automated Large Artery Occlusion Detection in Stroke: A Single-Center Validation Study of an Artificial Intelligence Algorithm

Author:

Rodrigues Gabriel,Barreira Clara M.,Bouslama MehdiORCID,Haussen Diogo C.,Al-Bayati Alhamza,Pisani Leonardo,Liberato Bernardo,Bhatt Nirav,Frankel Michael R.,Nogueira Raul G.

Abstract

<b><i>Introduction:</i></b> Expediting notification of lesions in acute ischemic stroke (AIS) is critical. Limited availability of experts to assess such lesions and delays in large vessel occlusion (LVO) recognition can negatively affect outcomes. Artificial intelligence (AI) may aid LVO recognition and treatment. This study aims to evaluate the performance of an AI-based algorithm for LVO detection in AIS. <b><i>Methods:</i></b> Retrospective analysis of a database of AIS patients admitted in a single center between 2014 and 2019. Vascular neurologists graded computed tomography angiographies (CTAs) for presence and site of LVO. Studies were analyzed by the Viz-LVO Algorithm® version 1.4 – neural network programmed to detect occlusions from the internal carotid artery terminus (ICA-T) to the Sylvian fissure. Comparisons between human versus AI-based readings were done by test characteristic analysis and Cohen’s kappa. Primary analysis included ICA-T and/or middle cerebral artery (MCA)-M1 LVOs versus non-LVOs/more distal occlusions. Secondary analysis included MCA-M2 occlusions. <b><i>Results:</i></b> 610 CTAs were analyzed. The AI algorithm rejected 2.5% of the CTAs due to poor quality, which were excluded from the analysis. Viz-LVO identified ICA-T and MCA-M1 LVOs with a sensitivity of 87.6%, specificity of 88.5%, and accuracy of 87.9% (AUC 0.88, 95% CI: 0.85–0.92, <i>p</i> &#x3c; 0.001). Cohen’s kappa was 0.74. In the secondary analysis, the algorithm yielded a sensitivity of 80.3%, specificity of 88.5%, and accuracy of 82.7%. The mean run time of the algorithm was 2.78 ± 0.5 min. <b><i>Conclusion:</i></b> Automated AI reading allows for fast and accurate identification of LVO strokes with timely notification to emergency teams, enabling quick decision-making for reperfusion therapies or transfer to specialized centers if needed.

Publisher

S. Karger AG

Subject

Cardiology and Cardiovascular Medicine,Clinical Neurology,Neurology

Reference23 articles.

1. Katan M, Luft A. Global burden of stroke. Semin Neurol. 2018;38(2):208–11.

2. Malhotra K, Gornbein J, Saver JL. Ischemic strokes due to large-vessel occlusions contribute disproportionately to stroke-related dependence and death: a review. Front Neurol. 2017;8:651.

3. Goyal M, Menon BK, van Zwam WH, Dippel DW, Mitchell PJ, Demchuk AM, et al. Endovascular thrombectomy after large-vessel ischaemic stroke: a meta-analysis of individual patient data from five randomised trials. Lancet. 2016;387(10029):1723–31.

4. Hacke W, Lyden P, Emberson J, Baigent C, Blackwell L, Albers G, et al. Effects of alteplase for acute stroke according to criteria defining the European Union and United States marketing authorizations: individual-patient-data meta-analysis of randomized trials. Int J Stroke. 2018;13(2):175–89.

5. Kamal N, Sheng S, Xian Y, Matsouaka R, Hill MD, Bhatt DL, et al. Delays in door-to-needle times and their impact on treatment time and outcomes in get with the guidelines-stroke. Stroke. 2017;48(4):946–54.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3