Author:
Esteves-Oliveira Marcella,Witulski Nadine,Hilgers Ralf-Dieter,Apel Christian,Meyer-Lueckel Hendrik,de Paula Eduardo Carlos
Abstract
The aim of this in vitro study was to evaluate the effect of combined CO2 laser and tin-containing fluoride treatment on the formation and progression of enamel erosive lesions. Ninety-six human enamel samples were obtained, stored in thymol solution and, after surface polishing, randomly divided into 6 different surface treatment groups (n = 16 in each group) as follows: no treatment, control (C); one CO2 laser irradiation (L1); two CO2 laser irradiations (L2); daily application of fluoride solution (F); combined daily fluoride solution + one CO2 laser irradiation (L1F), and combined daily fluoride solution + two CO2 laser irradiations (L2F). Laser irradiation was performed at 0.3 J/cm2 (5 µs/226 Hz/10.6 µm) on day 1 (L1) and day 6 (L2). The fluoride solution contained AmF/NaF (500 ppm F), and SnCl2 (800 ppm Sn) at pH 4.5. After surface treatment the samples were submitted to an erosive cycling over 10 days, including immersion in citric acid (2 min/0.05 M/pH = 2.3) 6 times daily and storage in remineralization solution (≥1 h) between erosive attacks. At the end of each cycling day, the enamel surface loss (micrometers) was measured using a 3D laser profilometer. Data were statistically analyzed by means of a 2-level mixed effects model and linear contrasts (α = 0.05). Group F (-3.3 ± 2.0 µm) showed significantly lower enamel surface loss than groups C (-27.22 ± 4.1 µm), L1 (-18.3 ± 4.4 µm) and L2 (-16.3 ± 5.3 µm) but higher than L1F (-1.0 ± 4.4 µm) and L2F (1.4 ± 3.2 µm, p < 0.05). Under the conditions of this in vitro study, the tin-containing fluoride solution caused 88% reduction of enamel surface loss, while its combination with CO2 laser irradiation at 0.3 J/cm2 hampered erosive loss almost completely.
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献