Cytotoxic Effects of the Schweinfurthin Analog 5′-Methylschweinfurthin G in Malignant Plasma Cells

Author:

Manfredi BarbaraORCID,Neighbors Jeffrey D.,Hohl Raymond J.

Abstract

<b><i>Introduction:</i></b> Multiple myeloma (MM) is a B plasma cell malignancy currently incurable, and novel therapeutics are needed. Evidences regarding the effect of natural compound schweinfurthins suggest that hematological cancers showed growth inhibitory effects to this family of compounds at single nanomolar concentrations. In this study, we evaluated the cytotoxicity of the schweinfurthin synthetic analog 5′-methylschweinfurthin G (MeSG) in MM cell lines, to better understand the validity of this compound as a therapeutic candidate for further studies in MM. <b><i>Methods:</i></b> MeSG toxicity against MM cell lines RPMI-8226, MM.1S, and H-929 was evaluated. Trypan blue exclusion and MTT assays measured cell viability and mitochondrial activity, respectively. Flow cytometry was performed to detect apoptotic mitochondria. Flow cytometry and Western blotting techniques were used to investigate apoptosis and to examine the cell cycle. Western blotting was used to determine AKT activation upon MeSG treatment. <b><i>Results:</i></b> We provide evidence that in all MM cells analyzed, MeSG exerts diverse cytotoxic effects. MeSG treatment of MM.1S and H-929, but not in RPMI-8226, causes a loss of mitochondria membrane potential. MeSG causes an arrest in G<sub>2</sub>/M, especially in RPMI-8226, supported by decreased levels of cyclin-B1 and early increased levels of p21. Finally, there is a diverse response to the MeSG treatment for AKT phosphorylation. MM.1S and H-929 showed a marked decrease in AKT phosphorylation at earlier time points compared to the RPMI-8226 line. <b><i>Conclusions:</i></b> MeSG cytotoxicity has been confirmed in all of 3 cell lines studied. Results suggest an early event of increased reactive oxygen species, and/or involvement of cholesterol homeostasis via decreased AKT activation, both of which are currently under investigation.

Publisher

S. Karger AG

Subject

Pharmacology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3