Topographic Evolution of Anterior Cerebral Artery Infarction and Its Impact on Motor Impairment

Author:

Thirugnanachandran TharaniORCID,Ma Henry,Vuong JasonORCID,Mitchell Melissa,Wong ChloeORCID,Singhal Shaloo,Slater Lee-AnneORCID,Beare Richard,Srikanth Velandai,Phan Thanh G.ORCID

Abstract

<b><i>Introduction:</i></b> Motor deficit is common following anterior cerebral artery (ACA) stroke. This study aimed to determine the impact on the motor outcome, given the location of descending corticofugal fiber tracts (from the primary motor cortex [M1], dorsal and ventral premotor area [PMdv], and supplementary motor area [SMA]) and the regional variations in collateral support of the ACA territory. <b><i>Methods:</i></b> Patients with ACA vessel occlusion were included. Disruption to corticofugal fibers was inferred by overlap of tracts with a lesion on computed tomography perfusion at the onset and on magnetic resonance imaging (MRI) poststroke. The motor outcome was defined by dichotomized and combined National Institute of Health Stroke Scale (NIHSS) sub-scores for the arm and leg. Multivariate hierarchical partitioning was used to analyze the proportional contribution of the corticofugal fibers to the motor outcome. <b><i>Results:</i></b> Forty-seven patients with a median age of 77.5 (interquartile range 68.0–84.5) years were studied. At the stroke onset, 96% of patients showed evidence of motor deficit on the NIHSS, and the proportional contribution of the corticofugal fibers to motor deficit was M1-33%, SMA-33%, and PMdv-33%. By day 7, motor deficit was present in &#x3c;50% of patients and contribution of M1 fiber tracts to the motor deficit was reduced (M1-10.2%, SMA-61.0%, PMdv-28.8%). We confirmed our findings using publicly available high-resolution templates created from Human Connectome Project data. This also showed a reduction in involvement of M1 fiber tracts on initial perfusion imaging (33%) compared to MRI at a median time of 7 days poststroke (11%). <b><i>Conclusion:</i></b> Improvements in the motor outcome seen in ACA stroke may be due to the relative sparing of M1 fiber tracts from infarction. This may occur as a consequence of the posterior location of M1 fiber tracts and the evolving topography of ACA stroke due to the compensatory capacity of leptomeningeal anastomoses.

Publisher

S. Karger AG

Subject

Cardiology and Cardiovascular Medicine,Neurology (clinical),Neurology

Reference31 articles.

1. Langhorne P, Coupar F, Pollock A. Motor recovery after stroke: a systematic review. Lancet Neurol. 2009 Aug;8(8):741–54.

2. Newton JM, Ward NS, Parker GJ, Deichmann R, Alexander DC, Friston KJ, et al. Non-invasive mapping of corticofugal fibres from multiple motor areas: relevance to stroke recovery. Brain. 2006 Jul;129(Pt 7):1844–58.

3. Schulz R, Park CH, Boudrias MH, Gerloff C, Hummel FC, Ward NS. Assessing the integrity of corticospinal pathways from primary and secondary cortical motor areas after stroke. Stroke. 2012 Aug;43(8):2248–51.

4. Angermaier A, Langner S, Kirsch M, Kessler C, Hosten N, Khaw AV. CT-angiographic collateralization predicts final infarct volume after intra-arterial thrombolysis for acute anterior circulation ischemic stroke. Cerebrovasc Dis. 2011;31(2):177–84.

5. Phan TG, Hilton J, Beare R, Srikanth V, Sinnott M. Computer modeling of anterior circulation stroke: proof of concept in cerebrovascular occlusion. Front Neurol. 2014;5:176.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3