<b><i>SLIT2</i></b> Rare Sequencing Variants Identified in Idiopathic Hypogonadotropic Hypogonadism

Author:

Wu Jiayu,Fang Zhenghuan,Wang Xinying,Zeng Wang,Zhao Yaguang,Jiang Fang,Chen Dan-Na,Zheng Ruizhi,Li JinchenORCID,Men Meichao,Li Jia-Da

Abstract

<b><i>Introduction:</i></b> Idiopathic hypogonadotropic hypogonadism (IHH) is a rare reproductive disorder resulting from gonadotropin-releasing hormone (GnRH) deficiency. However, in only approximately half of patients with IHH is it possible to identify a likely molecular diagnosis. Mice lacking Slit2 have a reduced number or altered patterning of GnRH neurons in the brain. In order to assess the contribution of <i>SLIT2</i> to IHH, we carried out a candidate gene burden test analysis. <b><i>Methods:</i></b> A total of 196 IHH probands and 2,362 ethic-matched controls were recruited for this study. The IHH probands and controls were subjected to whole-exome sequencing. In the IHH patients with <i>SLIT2</i> variants and their available family members, detailed phenotyping and segregation analysis were performed. <b><i>Results:</i></b> Nine heterozygous <i>SLIT2</i> rare sequencing variants (RSVs) were identified in 13 probands, with a prevalence of 6.6%. Furthermore, we identified an increased mutational burden for <i>SLIT2</i> in this cohort (odds ratio = 2.2, <i>p</i> = 0.021). The segregation analysis of available IHH families revealed that the majority of <i>SLIT2</i> RSVs were inherited from unaffected or partially affected parents. <b><i>Conclusion:</i></b> Our study suggests <i>SLIT2</i> as a new IHH-associated gene and expands the clinical and genetic spectrum of IHH. Furthermore, <i>SLIT2</i> alone does not appear to be sufficient to cause the disorder, and it may interact with other IHH-associated genes to induce a clinical phenotype.

Publisher

S. Karger AG

Subject

Endocrinology,Endocrinology, Diabetes and Metabolism,Pediatrics, Perinatology and Child Health

Reference51 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3