Inherited Selenocysteine Transfer RNA Mutation: Clinical and Hormonal Evaluation of 2 Patients

Author:

Geslot Aurore,Savagner Frédérique,Caron PhilippeORCID

Abstract

<b><i>Introduction:</i></b> Iodothyronine deiodinases are selenoproteins with the amino acid selenocysteine (Sec) introduced into the position of a TGA stop codon by a complex machinery involving tRNA<sup>[Ser]Sec</sup> when a cis-acting Sec-insertion sequence element is present in the 3′ end of the mRNA. Recently, a variant in the <i>TRU-TCA1-1</i> gene encoding for tRNA<sup>[Ser]Sec</sup> was reported, which resulted in reduced expression of stress-related selenoproteins. The proband presented with multisystem symptoms, euthyroid hyperthyroxinemia, and selenium deficiency. Here, we describe 2 new members of a family harboring the same tRNA<sup>[Ser]Sec</sup> variant. <b><i>Case Presentation:</i></b> A 13-year-old patient was seen for Hashimoto’s disease with high FT3 (4.6 pg/mL, normal range 2–4.2 pg/mL) and normal FT4 and TSH concentrations. He had no clinical complaints. During a 6-year clinical and hormonal follow-up, the index patient was not treated, FT3 decreased, FT4 increased, and serum TSH stayed in the normal range resulting in a euthyroid hyperthyroxinemia. Reverse T3 concentration was significantly increased at the last visit (19 years and 4 months). At the last evaluation, the total selenium level was low (91 μg/L, normal range 95–125). DNA sequencing identified a germinal homozygous variant (C65G) in the <i>TRU-TCA1-1</i> gene. During follow-up, no additional clinical symptom was observed in the absence of any treatment. The same germinal tRNA<sup>[Ser]Sec</sup> variant was identified at heterozygous state in his father, who had normal thyroid function tests except a moderately increased reverse T3 concentration, with increased total selenium (143 μg/L) level. In both patients, the expression of stress-related selenoprotein GPX3 was in the low-normal range (168 and 180 IU/L, respectively, normal range: 150–558 IU/L). We did not find any significant biological abnormalities evocative of other selenoprotein deficiencies. <b><i>Discussion/Conclusion:</i></b> We report on 2 members of a family with a variant in the <i>TRU-TCA1-1</i> gene encoding for tRNA<sup>[Ser]Sec</sup>. Our study suggests that this tRNA<sup>[Ser]Sec</sup> variant is not exclusively causative of disruption in selenoprotein synthesis.

Publisher

Bioscientifica

Subject

Endocrinology, Diabetes and Metabolism

Reference23 articles.

1. Arthur JR, Bermano G, Mitchell JH, Hesketh JE. Regulation of selenoprotein gene expression and thyroid hormone metabolism. Biochem Soc Trans. 1996 May;24(2):384–8.

2. Shetty SP, Copeland PR. Selenocysteine incorporation: a trump card in the game of mRNA decay. Biochimie. 2015 Jul;114:97–101.

3. Labunskyy VM, Hatfield DL, Gladyshev VN. Selenoproteins: molecular pathways and physiological roles. Physiol Rev. 2014 Jul;94(3):739–77.

4. Schoenmakers E, Carlson B, Agostini M, Moran C, Rajanayagam O, Bochukova E, et al. Mutation in human selenocysteine transfer RNA selectively disrupts selenoprotein synthesis. J Clin Invest. 2016 Mar;126(3):992–6.

5. Schoenmakers E, Agostini M, Mitchell C, Schoenmakers N, Papp L, Rajanayagam O, et al. Mutations in the selenocysteine insertion sequence-binding protein 2 gene lead to a multisystem selenoprotein deficiency disorder in humans. J Clin Invest. 2010 Dec;120(12):4220–35.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3