Gestational Weight Gain Influences the Adipokine-Oxidative Stress Association during Pregnancy

Author:

Solis Paredes Juan MarioORCID,Perichart Perera Otilia,Montoya Estrada Araceli,Reyes Muñoz Enrique,Espino y Sosa Salvador,Ortega Castillo Veronica,Medina Bastidas Diana,Tolentino Dolores Maricruz,Sanchez Martinez Maribel,Nava Salazar Sonia,Estrada Gutierrez Guadalupe

Abstract

<b><i>Introduction and Objective:</i></b> The weight gained during pregnancy could determine the immediate and future health of the mother-child dyad. Excessive gestational weight gain (EGWG) due to abnormal adipose tissue (AT) accumulation is strongly associated with adverse perinatal outcomes as gestational diabetes, macrosomia, obesity, and hypertension further in life. Dysregulation of adipokine, AT dysfunction, and an imbalance in the prooxidant-antioxidant systems are critical features in altered AT accumulation. This study was aimed to investigate the association between adipokines and oxidative stress markers in pregnant women and the influence of the GWG on this association. <b><i>Methods:</i></b> Maternal blood samples were obtained in the third trimester of pregnancy (<i>n</i> = 74) and serum adipokines (adiponectin, leptin, and resistin), oxidative damage markers: 8-oxo-2′-deoxyguanosine (8-oxodG), lipohydroperoxides (LOOH), malondialdehyde (MDA), and carbonylated proteins (CP), and glucose a metabolic marker were measured. <b><i>Results:</i></b> Women with EGWG had low adiponectin levels than women with adequate weight gain (AWG) or insufficient weight gain (IWG). Multiple linear regression models revealed a positive association between adiponectin and 8-oxodG in women with AWG (<i>B</i> = 1.09, 95% CI: 164–222, <i>p</i> = 0.027) and IWG (<i>B</i> = 0.860, 95% CI: 0.199–1.52, <i>p</i> = 0.013) but not in women with EGWG. In women with EGWG, leptin was positively associated with LOOH (<i>p</i> = 0.018), MDA (<i>p</i> = 0.005), and CP (<i>p</i> = 0.010) oxidative markers. <b><i>Conclusion:</i></b> Our findings suggest that concurrent mechanisms regulate adipokine production and oxidative stress in pregnant women and that this regulation is influenced by GWG, probably due to an excessive AT accumulation.

Publisher

S. Karger AG

Subject

Physiology (medical),Health(social science)

Reference56 articles.

1. Newton ER, May L. Adaptation of maternal-fetal physiology to exercise in pregnancy: the basis of guidelines for physical activity in pregnancy. Clin Med Insights Womens Health. 2017 Feb 23;10:1179562X17693224.

2. Soma-Pillay P, Nelson-Piercy C, Tolppanen H, Mebazaa A. Physiological changes in pregnancy. Cardiovasc J Afr. 2016 Mar;27(2):89–94.

3. Moya J, Phillips L, Sanford J, Wooton M, Gregg A, Schuda L. A review of physiological and behavioral changes during pregnancy and lactation: potential exposure factors and data gaps. J Expo Sci Environ Epidemiol. 2014 Sep;24(5):449–58.

4. de Haas S, Ghossein-Doha C, van Kuijk SM, van Drongelen J, Spaanderman ME. Physiological adaptation of maternal plasma volume during pregnancy: a systematic review and meta-analysis. Ultrasound Obstet Gynecol. 2017 Feb;49(2):177–87.

5. Kominiarek MA, Peaceman AM. Gestational weight gain. Am J Obstet Gynecol. 2017 Dec;217(6):642–51.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3