Identification of a Hypoxia-Related Signature as Candidate Detector for Schizophrenia Based on Genome-Wide Gene Expression

Author:

Li Zhitao,Sun Xinyu,He Jia,Kong Dongyan,Wang Jinyi,Wang Lili

Abstract

<b><i>Introduction:</i></b> Schizophrenia (SCZ), a severe neuropsychiatric disorder with high genetic susceptibility, has high rates of misdiagnosis due to the unavoidably subjective factors and heterogeneous clinical presentations. Hypoxia has been identified as an importantly risk factor that participates in the development of SCZ. Therefore, development of a hypoxia-related biomarker for SCZ diagnosis is promising. Therefore, we dedicated to develop a biomarker that could contribute to distinguishing healthy controls and SCZ patients. <b><i>Methods:</i></b> GSE17612, GSE21935, and GSE53987 datasets, consisting of 97 control samples and 99 SCZ samples, were involved in our study. The hypoxia score was calculated based on the single-sample gene-set enrichment analysis using the hypoxia-related differentially expressed genes to quantify the expression levels of these genes for each SCZ patient. Patients in high-score groups were defined if their hypoxia score was in the upper half of all hypoxia scores and patients in low-score groups if their hypoxia score was in the lower half. GSEA was applied to detect the functional pathway of these differently expressed genes. CIBERSORT algorithm was utilized to evaluate the tumor-infiltrating immune cells of SCZ patients. <b><i>Results:</i></b> In this study, we developed and validated a biomarker consisting of 12 hypoxia-related genes that could distinguish healthy controls and SCZ patients robustly. We found that the metabolism reprogramming might be activated in the patient with high hypoxia score. Finally, CIBERSORT analysis illustrated that lower composition of naive B cells and higher composition of memory B cells might be observed in low-score groups of SCZ patients. <b><i>Conclusion:</i></b> These findings revealed that the hypoxia-related signature was acceptable as a detector for SCZ, providing further insight into effective diagnosis and treatment strategies for SCZ.

Publisher

S. Karger AG

Subject

Genetics (clinical),Genetics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3