Segmentation of Dilated Hemorrhoidal Veins in Hemorrhoidal Disease

Author:

Díaz-Flores Lucio,Gutiérrez Ricardo,González-Gómez Miriam,García Pino,Sáez Francisco J.,Díaz-Flores Jr. Lucio,Carrasco José Luis,Madrid Juan F.

Abstract

Vein segmentation is a vascular remodeling process mainly studied in experimental conditions and linked to hemodynamic factors, with clinical implications. The aim of this work is to assess the morphologic characteristics, associated findings, and mechanisms that participate in vein segmentation in humans. To this end, we examined 156 surgically obtained cases of hemorrhoidal disease. Segmentation occurred in 65 and was most prominent in 15, which were selected for serial sections, immunohistochemistry, and immunofluorescence procedures. The dilated veins showed differently sized spaces, separated by thin septa. Findings associated with vein segmentation were: (a) vascular channels formed from the vein intima endothelial cells (ECs) and located in the vein wall and/or intraluminal fibrin, (b) vascular loops formed by interconnected vascular channels (venous-venous connections), which encircled vein wall components or fibrin and formed folds/pillars/papillae (FPPs; the encircling ECs formed the FPP cover and the encircled components formed the core), and (c) FPP splitting, remodeling, alignment, and fusion, originating septa. Thrombosis was observed in some nonsegmented veins, while the segmented veins only occasionally contained thrombi. Dense microvasculature was also present in the interstitium and around veins. In conclusion, the findings suggest that hemorrhoidal vein segmentation is an adaptive process in which a piecemeal angiogenic mechanism participates, predominantly by intussusception, giving rise to intravascular FPPs, followed by linear rearrangement, remodeling and fusion of FPPs, and septa formation. Identification of other markers, as well as the molecular bases, hemodynamic relevance, and possible therapeutic implications of vein segmentation in dilated hemorrhoidal veins require further studies.

Publisher

S. Karger AG

Subject

Histology,Anatomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3