Elevation of LncRNA ENST00000453774.1 Prevents Renal Fibrosis by Upregulating FBN1, IGF1R, and KLF7

Author:

Yuan Xiangning,Tang Wen-bin,Peng Ling,Chen Yusa,Tang Shumei,Ge Huipeng,Wang Xiufen,Xiao Xiangcheng

Abstract

<b><i>Introduction:</i></b> Transforming growth factor-β (TGF-β), a common outcome of various progressive chronic kidney diseases, can regulate and induce fibrosis. <b><i>Objective:</i></b> The study aimed to identify downstream targets of lncRNA ENST00000453774.1 (lnc453774.1) and outline their functions on the development of renal fibrosis. <b><i>Methods:</i></b> HK-2 cells were induced with 5 ng/mL TGF-β1 for 24 h to construct a renal fibrosis cell model. Differentially expressed genes (DEGs) targeted by lnc453774.1 in TGF-β1-induced renal fibrosis were identified using RNA sequencing. The dataset GSE23338 was employed to identify DEGs in 48-h TGF-β1-stimulated human kidney epithelial cells, and these DEGs were intersected with genes in the key module using weighted gene co-expression network analysis to generate key genes associated with renal fibrosis. MicroRNAs (miRs) that had targeting relationship with keys genes and lnc453774.1 were predicted by using Miranda software, and important genes were intersected with key genes that had targeting relationship with these miRs. Key target genes by lnc453774.1 were identified in a protein-protein interaction network among lnc453774.1, important genes, and reported genes related to autophagy, oxidative stress, and cell adhesion. <b><i>Results:</i></b> Key genes in the key module (turquoise) were intersected with DEGs in the dataset GSE23338 and yielded 20 key genes regulated by lnc453774.1 involved in renal fibrosis. Fourteen miRs had targeting relationship with lnc453774.1 and key genes, and 8 important genes targeted by these 14 miRs were identified. Fibrillin-1 (FBN1), insulin-like growth factor 1 receptor (IGF1R), and Kruppel-like factor 7 (KLF7) were identified to be involved in autophagy, oxidative stress, and cell adhesion and were elevated in the lnc453774.1-overexpressing TGF-β1-induced cells. <b><i>Conclusion:</i></b> These results show FBN1, IGF1R, and KLF7 serve as downstream targets of lnc453774.1, and that lnc453774.1 may protect against renal fibrosis through competing endogenous miRs which target FBN1, IGF1R, and KLF7 mRNAs.

Publisher

S. Karger AG

Subject

Cardiology and Cardiovascular Medicine,Nephrology,Cardiology and Cardiovascular Medicine,Nephrology

Reference36 articles.

1. Roberts VS, Cowan PJ, Alexander SI, Robson SC, Dwyer KM. The role of adenosine receptors A2A and A2B signaling in renal fibrosis. Kidney Int. 2014 Oct;86(4):685–92.

2. Neelisetty S, Alford C, Reynolds K, Woodbury L, Nlandu-Khodo S, Yang H, et al. Renal fibrosis is not reduced by blocking transforming growth factor-β signaling in matrix-producing interstitial cells. Kidney Int. 2015 Sep;88(3):503–14.

3. Feng M, Tang PM, Huang XR, Sun SF, You YK, Xiao J, et al. TGF-β mediates renal fibrosis via the Smad3-Erbb4-IR long noncoding RNA Axis. Mol Ther. 2018 Jan 3;26(1):148–61.

4. Livingston MJ, Ding HF, Huang S, Hill JA, Yin XM, Dong Z. Persistent activation of autophagy in kidney tubular cells promotes renal interstitial fibrosis during unilateral ureteral obstruction. Autophagy. 2016 Jun 2;12(6):976–98.

5. van der Pol A, Gil A, Tromp J, Silljé HHW, van Veldhuisen DJ, Voors AA, et al. OPLAH ablation leads to accumulation of 5-oxoproline, oxidative stress, fibrosis, and elevated fillings pressures: a murine model for heart failure with a preserved ejection fraction. Cardiovasc Res. 2018 Dec 1;114(14):1871–82.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3