Impaired Sensorimotor Adaption in Schizophrenia in Comparison to Age-Matched and Elderly Controls

Author:

Cornelis Claudia,De Picker Livia J.,Coppens Violette,Morsel Anne,Timmers Maarten,Dumont Glenn,Sabbe Bernard G.C.,Morrens Manuel,Hulstijn Wouter

Abstract

<b><i>Background:</i></b> The “cognitive dysmetria hypothesis” of schizophrenia proposes a disrupted communication between the cerebellum and cerebral cortex, resulting in sensorimotor and cognitive symptoms. Sensorimotor adaptation relies strongly on the function of the cerebellum. <b><i>Objectives:</i></b> This study investigated whether sensorimotor adaptation is reduced in schizophrenia compared with age-matched and elderly healthy controls. <b><i>Methods:</i></b> Twenty-nine stably treated patients with schizophrenia, 30 age-matched, and 30 elderly controls were tested in three motor adaptation tasks in which visual movement feedback was unexpectedly altered. In the “rotation adaptation task” the perturbation consisted of a rotation (30° clockwise), in the “gain adaptation task” the extent of the movement feedback was reduced (by a factor of 0.7) and in the “vertical reversal task,” up- and downward pen movements were reversed by 180°. <b><i>Results:</i></b> Patients with schizophrenia adapted to the perturbations, but their movement times and errors were substantially larger than controls. Unexpectedly, the magnitude of adaptation was significantly smaller in schizophrenia than elderly participants. The impairment already occurred during the first adaptation trials, pointing to a decline in explicit strategy use. Additionally, post-adaptation aftereffects provided strong evidence for impaired implicit adaptation learning. Both negative and positive schizophrenia symptom severities were correlated with indices of the amount of adaptation and its aftereffects. <b><i>Conclusions:</i></b> Both explicit and implicit components of sensorimotor adaptation learning were reduced in patients with schizophrenia, adding to the evidence for a role of the cerebellum in the pathophysiology of schizophrenia. Elderly individuals outperformed schizophrenia patients in the adaptation learning tasks.

Publisher

S. Karger AG

Subject

Biological Psychiatry,Psychiatry and Mental health,Neuropsychology and Physiological Psychology

Reference54 articles.

1. Abboud R, Noronha C, Diwadkar VA. Motor system dysfunction in the schizophrenia diathesis: neural systems to neurotransmitters. Eur Psychiatry. 2017;44:125–33.

2. Lisi G, Nico D, Ribolsi M, Niolu C, Lacquaniti F, Siracusano A, et al. Asymmetries in initiation of aiming movements in schizophrenia. Neuropsychologia. 2017;109:200–7.

3. Morrens M, Hulstijn W, Sabbe B. Psychomotor slowing in schizophrenia. Schizophr Bull. 2007;33(4):1038–53.

4. Fiszdon JM, McClough JF, Silverstein SM, Bell MD, Jaramillo JR, Smith TE. Learning potential as a predictor of readiness for psychosocial rehabilitation in schizophrenia. Psychiatry Res. 2006;143(2–3):159–66.

5. Walther S, Strik W. Motor symptoms and schizophrenia. Neuropsychobiology. 2012;66(2):77–92.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3