Tracking Chromosomal Origins in the Northern Italy System of Metacentric Races of the House Mouse

Author:

Giménez Mabel D.,Hughes Jonathan J.ORCID,Scascitelli Moira,Gabriel Sofia I.ORCID,Förster Daniel W.ORCID,Panithanarak Thadsin,Hauffe Heidi C.ORCID,Searle Jeremy B.ORCID

Abstract

The Western European house mouse is chromosomally diverse, with diploid karyotypes ranging from the standard 40 telocentric chromosomes down to 22 chromosomes. Karyotypes are modified through Robertsonian (Rb) fusion of 2 telocentrics into a single metacentric, occurring repeatedly with fixation, and whole-arm reciprocal translocations (WARTs) generating additional novel karyotypes. Over 100 metacentric populations (chromosomal races) have been identified, geographically clustered into “systems.” Chromosomal races within systems often hybridise, and new races may emerge through this hybridisation (“zonal raciation”). We wished to determine the degree to which chromosomal races in a system have evolved independently or share common ancestry. Recombination between chromosomes from hybridising chromosomal races can erase the signals associated with a particular metacentric of interest, making inferences challenging. However, reduced recombination near the centromeres of chromosomal race-specific metacentrics makes centromere-adjacent markers ideal for solving this problem. For the Northern Italy System (NIS), we used microsatellite markers near the centromere to test previous hypotheses about evolutionary relationships of 5 chromosomal races. We chose markers from chromosomes 1, 3, 4, and 6, all of which comprise one arm of a metacentric in at least 2 of these NIS metacentric populations. We used estimates of F<sub>ST</sub> and R<sub>ST</sub>, as well as principal components analyses and neighbour-joining phylogenetic analyses, to infer evolutionary relationships between these 5 chromosomal races and neighbouring mice with the standard karyotype. We showed that the metacentric populations form a single grouping distinct from the standard populations, consistent with their common origin and consistent with a parsimonious sequence of chromosomal rearrangements to explain the relationship of the chromosomal races. That origin and evolution of the chromosomal races in the system would have involved Rb fusions, explaining the occurrence of chromosomal races with diploid numbers as low as 22. However, WARTs and zonal raciation have also been inferred, and the rare occurrence of chromosome 1 in different metacentrics in closely related chromosomal races is almost certainly explained by a WART. Our results with centromeric microsatellites are consistent with the above scenarios, illustrating, once again, the value of markers in the centromeric region to test evolutionary hypotheses in house mouse chromosomal systems.

Publisher

S. Karger AG

Subject

Genetics (clinical),Genetics,Molecular Biology

Reference49 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3