GSK-3β as a Potential Coordinator of Anabolic and Catabolic Pathways in Hepatitis C Virus Insulin Resistance

Author:

Das Gokul C.,Hollinger F. Blaine

Abstract

<b><i>Introduction:</i></b> Chronic hepatitis C infection can result in insulin resistance (IR). We have previously shown that it occurs through the interaction of pathways for glucose homeostasis, insulin signaling, and autophagy. But it is not known how soon the pathways are activated and how IR is related to the signals generated by catabolic and anabolic conditions occurring in infected cells. We have extended our studies to a cell culture system mimicking acute infection and to downstream pathways involving energy-sensor AMPK and nutrient-sensor mTOR that are active in catabolic and anabolic processes within the infected cells. <b><i>Methods:</i></b> Huh7 liver cells in culture were infected with hepatitis C virus (HCV). We performed proteomics analysis of key proteins in infected cells by Western blotting and IP experiments, with or without IFNα exposure as a component of conventional therapeutic strategy. <b><i>Results:</i></b> We present evidence that (a) IRS-1 Ser312, Beclin-1, protein conjugate Atg12-Atg5 or GS Ser641 are up-regulated early in infection presumably by activating the same pathways as utilized for persistent infection; (b) Bcl-XL, an inhibitor of both autophagy and apoptosis, is present in a core complex with IRS-1 Ser312 and Beclin-1 during progression of IR; (c) AMPK level remains about the same in infected cells where it is activated by phosphorylation at Thr172 concomitant with increased autophagy, a hallmark of catabolic conditions; (d) an mTOR level that promotes anabolism is increased rather than decreased under an expanded autophagy; (e) hypophosphorylation of translational repressor 4E-BP1 downstream of mTOR is suggestive of reduced protein synthesis; and (f) β-catenin, is up-regulated but not phosphorylated suggesting indirectly our previous contention that its kinase, GSK-3β, is mostly in an inactive state. <b><i>Conclusion:</i></b> We report that in the development of IR following chronic infection, anabolic and catabolic pathways are activated early, and the metabolic interaction occurs possibly in a core complex with IRS-1 Ser312, Beclin-1, and autophagy inhibitor Bcl-XL. Induction of autophagy is usually controlled by a two-edged mechanism acting in opposition under anabolic and catabolic conditions by AMPK/mTOR/4E-BP1 pathway with GSK-3β-mediated feedback loops. However, we have observed an up-regulation of mTOR along with an up-regulation of AMPK caused by HCV infection is a deviation from the normal scenario described above which might be of therapeutic interest.

Publisher

S. Karger AG

Subject

Infectious Diseases,Virology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3