Role of Na+-K+-2Cl- Cotransporter 1 in Phenylephrine-Induced Rhythmic Contraction in the Mouse Aorta: Regulation of Na+-K+-2Cl- Cotransporter 1 by Ca2+ Sparks and KCa Channels

Author:

Shen Bing,Fu Jie,Guo Jizheng,Zhang Jie,Wang Xia,Pan Xiang,Chen Meihua,Zhou Yifan,Zhu Min,Du Juan

Abstract

Background/Aims: Vasoconstrictor-induced rhythmic contraction of arteries or veins has been observed both in vivo and in vitro. Many studies have reported that gap junctions, ryanodine receptors, Na+, K+-ATPase and other factors are involved in vasoconstrictor-induced rhythmic contraction in vascular smooth muscle. However, the mechanism is still not completely understood. Methods: We used vessel tension measurements, intracellular recordings and intracellular Cl- concentration ([Cl-]i) measurements to investigate the mechanism underlying phenylephrine (PE)-induced rhythmic contraction in the mouse aorta. Results: We found that Na+-K+-2Cl- cotransporter 1 (NKCC1) inhibitor bumetanide abolished PE-induced rhythmic contraction. The Cl- channel blockers DIDS and niflumic acid initially augmented the amplitude of PE-induced rhythmic contraction but later inhibited the rhythmic contraction. The large Ca2+-activated K+ channel blocker TEA and iberiotoxin increased the amplitude of PE-induced rhythmic contraction. The voltage-dependent Ca2+ channel blocker, nifedipine, and a Ca2+-free solution abolished PE-induced rhythmic contraction. The inhibitor of ryanodine receptors in the sarcoplasmic reticulum, ryanodine, inhibited PE-induced rhythmic contraction. Moreover, bumetanide hyperpolarized the membrane potential of vascular smooth muscle cells in a resting state or after PE pre-treatment. Bumetanide, niflumic acid, ryanodine, iberiotoxin, nifedipine and Ca2+-free buffer significantly suppressed the PE-induced [Cl-]i increase. Conclusion: These data indicate that NKCC1 is involved in the formation of PE-induced rhythmic contraction, and we also provide a method with which to indirectly observe the NKCC1 activity in isolated intact mouse thoracic aortas.

Publisher

S. Karger AG

Subject

Physiology

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3