Augmenting Trait-Dependent Diversification Estimations with Fossil Evidence: A Case Study Using Osmoregulatory Neurovasculature

Author:

O’Brien Haley D.

Abstract

When comparative neuromorphological studies are extended into evolutionary contexts, traits of interest are often linked to diversification patterns. Features demonstrably associated with increases in diversification rates and the infiltration or occupation of novel niche spaces are often termed “key innovations.” Within the past decade, phylogenetically informed methods have been developed to test key innovation hypotheses and evaluate the influence these traits have had in shaping modern faunas. This is primarily accomplished by estimating state-dependent speciation and extinction rates. These methods have important caveats and guidelines related to both calculation and interpretation, which are necessary to understand in cases of discrete (qualitative) character analysis, as can be common when studying the evolution of neuromorphology. In such studies, inclusion of additional characters, acknowledgement of character codistribution, and addition of sister clade comparison should be explored to ensure model accuracy. Even so, phylogenies provide a survivor-only examination of character evolution, and paleontological contexts may be necessary to replicate and confirm results. Here, I review these issues in the context of selective brain cooling – a neurovascular-mediated osmoregulatory physiology that dampens hypothalamic responses to heat stress and reduces evaporative water loss in large-bodied mammals. This binary character provides an example of the interplay between sample size, evenness, and character codistribution. Moreover, it allows for an opportunity to compare phylogenetically constrained results with paleontological data, augmenting survivor-only analyses with observable extinction patterns. This trait- dependent diversification example indicates that selective brain cooling is significantly associated with the generation of modern large-mammal faunas. Importantly, paleontological data validate phylogenetic patterns and demonstrate how suites of characters worked in concert to establish the large-mammal communities of today.

Publisher

S. Karger AG

Subject

Behavioral Neuroscience,Developmental Neuroscience

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3