Lapatinib Decreases the Preimplantation Aneuploidy Rate of in vitro Fertilized Mouse Embryos without Affecting Completion of Preimplantation Development

Author:

Maleki Parvaneh,Gourabi Hamid,Tahmaseb Mohammad,Golkar-Narenji Afsaneh,Bazrgar Masood

Abstract

One of the major reasons for implantation failure and spontaneous abortion is a high incidence of preimplantation chromosomal aneuploidy. Lapatinib simultaneously inhibits EGFR and HER2, leading to apoptosis. We hypothesized a higher sensitivity for aneuploid cells in preimplantation embryos to lapatinib based on reports of aneuploid cell lines being sensitive to some anticancer drugs. Late 2-cell mouse embryos were treated with lapatinib after determining a nontoxic dose. Morphologies were recorded 24, 48, and 60 hours later. The effect of lapatinib on the aneuploidy rate was evaluated by studying blastocyst cells using FISH. Although the rate of development to 8-cell and morula stage was higher in the control group (<i>p</i> &#x3c; 0.05), there was no difference in development to the blastocyst stage at the same studied intervals between lapatinib-treated and control groups (<i>p</i> = 0.924). The mean number of cells in morula and blastocyst stages were not different between the groups (<i>p</i> = 0.331 and <i>p</i> = 0.175, respectively). The frequency of aneuploid cells and diploid embryos was, respectively, significantly lower and higher in lapatinib-treated embryos, (<i>p</i> &#x3c; 0.001). Since lapatinib treatment reduced the aneuploidy rate without impact on the development of mouse preimplantation embryos to the blastocyst stage and number of total cells, lapatinib seems useful for prevention of preimplantation aneuploidy in in vitro fertilization.

Publisher

S. Karger AG

Subject

Genetics(clinical),Genetics,Molecular Biology

Reference43 articles.

1. Abe KI, Funaya S, Tsukioka D, Kawamura M, Suzuki Y, Suzuki MG, et al. Minor zygotic gene activation is essential for mouse preimplantation development. Proc Natl Acad Sci USA. 2018;115(29):E6780–8.

2. Amano T, Jeffries E, Amano M, Ko AC, Yu H, Ko MS. Correction of Down syndrome and Edwards syndrome aneuploidies in human cell cultures. DNA Res. 2015;22(5):331–42.

3. Bazrgar M, Gourabi H, Valojerdi MR, Yazdi PE, Baharvand H. Self-correction of chromosomal abnormalities in human preimplantation embryos and embryonic stem cells. Stem Cells Dev. 2013;22(17):2449–56.

4. Bazrgar M, Gourabi H, Eftekhari-Yazdi P, Vazirinasab H, Fakhri M, Hassani F, et al. The effect of prolonged culture of chromosomally abnormal human embryos on the rate of diploid cells. Int J Fertil Steril. 2016;9(4):563–73.

5. Ben-David U, Arad G, Weissbein U, Mandefro B, Maimon A, Golan-Lev T, et al. Aneuploidy induces profound changes in gene expression, proliferation and tumorigenicity of human pluripotent stem cells. Nat Commun. 2014;5(5):4825.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3