Congenital Hypogonadotropic Hypogonadism with Anosmia and Gorlin Features Caused by a PTCH1 Mutation Reveals a New Candidate Gene for Kallmann Syndrome

Author:

Barraud Sara,Delemer Brigitte,Poirsier-Violle Céline,Bouligand Jérôme,Mérol Jean-Claude,Grange Florent,Higel-Chaufour Brigitte,Decoudier Bénédicte,Zalzali Mohamad,Dwyer Andrew A.,Acierno James S,Pitteloud Nelly ,Millar Robert P.,Young JacquesORCID

Abstract

<b><i>Background:</i></b> Two loci (CHD7 and SOX10) underlying Kallmann syndrome (KS) were discovered through clinical and genetic analysis of CHARGE and Waardenburg syndromes, conditions that include congenital anosmia caused by olfactory bulb (CA/OBs) defects and congenital hypogonadotropic hypogonadism (CHH). We hypothesized that other candidate genes for KS could be discovered by analyzing rare syndromes presenting with these signs. <b><i>Study Design, Size, Duration:</i></b> We first investigated a family with Gorlin-Goltz syndrome (GGS) in which affected members exhibited clinical signs suggesting KS. <b><i>Participants/Materials, Methods:</i></b> Proband and family members underwent detailed clinical assessment. The proband received detailed neuroendocrine evaluation. Genetic analyses included sequencing the PTCH1 gene at diagnosis, followed by exome analyses of causative or candidate KS/CHH genes, in order to exclude contribution to the phenotypes of additional mutations. Exome analyses in additional 124 patients with KS/CHH probands with no additional GGS signs. <b><i>Results:</i></b> The proband exhibited CA, absent OBs on magnetic resonance imaging, and had CHH with unilateral cryptorchidism, consistent with KS. Pulsatile Gonadotropin-releasing hormone (GnRH) therapy normalized serum gonadotropins and increased testosterone levels, supporting GnRH deficiency. Genetic studies revealed 3 affected family members harbor a novel mutation of PTCH1 (c.838G&#x3e; T; p.Glu280*). This unreported nonsense deleterious mutation results in either a putative truncated Ptch1 protein or in an absence of translated Ptch1 protein related to nonsense mediated messenger RNA decay. This heterozygous mutation cosegregates in the pedigree with GGS and CA with OBs aplasia/hypoplasia and with CHH in the proband suggesting a genetic linkage and an autosomal dominant mode of inheritance. No pathogenic rare variants in other KS/CHH genes cosegregated with these phenotypes. In additional 124 KS/CHH patients, 3 additional heterozygous, rare missense variants were found and predicted in silico to be damaging: p.Ser1203Arg, p.Arg1192Ser, and p.Ile108Met. <b><i>Conclusion:</i></b> This family suggests that the 2 main signs of KS can be included in GGS associated with PTCH1 mutations. Our data combined with mice models suggest that PTCH1 could be a novel candidate gene for KS/CHH and reinforce the role of the Hedgehog signaling pathway in pathophysiology of KS and GnRH neuron migration.

Publisher

S. Karger AG

Subject

Cellular and Molecular Neuroscience,Endocrine and Autonomic Systems,Endocrinology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3