Gene Ontology Enrichment Analysis of Renal Agenesis: Improving Prenatal Molecular Diagnosis

Author:

Kalantari SilviaORCID,Filges Isabel

Abstract

Uni- or bilateral renal agenesis (RA) is a commonly occurring major congenital anomaly impacting fetal and neonatal outcomes. Since the etiology is highly heterogeneous, our aim was to provide a logically structured approach by highlighting the genes in which variants have been identified to be associated with RA and to define the pathways involved in this type of abnormal kidney development. We used Phenolyzer to collect a list of all the genes known as causative for RA. Using ClueGO gene enrichment analysis, we classified the relationship between these genes and the biological processes defined by gene ontology. We identified 287 genes and 69 groups of enriched biological processes. About 50% included pathways directly related to the development of urogenital organ tissues. Several ciliary, axis specification, hindgut development, and endocrine pathways were enriched, which may relate to different clinical presentations of RA. Our gene ontology enrichment analysis shows that genes representing distinct biological pathways are significantly enriched. This knowledge will lead to an improved molecular diagnosis in clinical care when applying genome-wide sequencing approaches. The findings will also allow to further study the biological pathways involved in RA and to identify novel candidate genes and pathways.

Publisher

S. Karger AG

Subject

Genetics(clinical),Genetics

Reference27 articles.

1. Bindea G, Mlecnik B, Hackl H, Charoentong P, Tosolini M, Kirilovsky A, et al. ClueGO: A Cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics. 2009;25(8):1091–3.

2. Dalmer TRA, Clugston RD. Gene ontology enrichment analysis of congenital diaphragmatic hernia-associated genes. Pediatr Res. 2019;85(1):13–9.

3. Devlin LA, Sayer JA. Renal ciliopathies. Curr Opin Genet Dev. 2019;56:49–60.

4. Fabregat A, Korninger F, Viteri G, Sidiropoulos K, Marin-Garcia P, Ping P, et al. Reactome graph database: Efficient access to complex pathway data. PLoS Comput Biol. 2018;14(1):e1005968.

5. Filges I, Nosova E, Bruder E, Tercanli S, Townsend K, Gibson WT, et al. Exome sequencing identifies mutations in KIF14 as a novel cause of an autosomal recessive lethal fetal ciliopathy phenotype. Clin Genet. 2014;86(3):220–8.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3