Estimation of Baseline Serum Creatinine with Machine Learning

Author:

Ghosh Erina,Eshelman Larry,Lanius Stephanie,Schwager EmmaORCID,Pasupathy Kalyan S.,Barreto Erin F.,Kashani KianoushORCID

Abstract

<b><i>Introduction:</i></b> Comparing current to baseline serum creatinine is important in detecting acute kidney injury. In this study, we report a regression-based machine learning model to predict baseline serum creatinine. <b><i>Methods:</i></b> We developed and internally validated a gradient boosting model on patients admitted in Mayo Clinic intensive care units from 2005 to 2017 to predict baseline creatinine. The model was externally validated on the Medical Information Mart for Intensive Care III (MIMIC III) cohort in all ICU admissions from 2001 to 2012. The predicted baseline creatinine from the model was compared with measured serum creatinine levels. We compared the performance of our model with that of the backcalculated estimated serum creatinine from the Modification of Diet in Renal Disease (MDRD) equation. <b><i>Results:</i></b> Following ascertainment of eligibility criteria, 44,370 patients from the Mayo Clinic and 6,112 individuals from the MIMIC III cohort were enrolled. Our model used 6 features from the Mayo Clinic and MIMIC III datasets, including the presence of chronic kidney disease, weight, height, and age. Our model had significantly lower error than the MDRD backcalculation (mean absolute error [MAE] of 0.248 vs. 0.374 in the Mayo Clinic test data; MAE of 0.387 vs. 0.465 in the MIMIC III cohort) and higher correlation (intraclass correlation coefficient [ICC] of 0.559 vs. 0.050 in the Mayo Clinic test data; ICC of 0.357 vs. 0.030 in the MIMIC III cohort). <b><i>Discussion/Conclusion:</i></b> Using machine learning models, baseline serum creatinine could be estimated with higher accuracy than the backcalculated estimated serum creatinine level.

Publisher

S. Karger AG

Subject

Nephrology

Reference19 articles.

1. Alkandari O, Eddington KA, Hyder A, Gauvin F, Ducruet T, Gottesman R, et al. Acute kidney injury is an independent risk factor for pediatric intensive care unit mortality, longer length of stay and prolonged mechanical ventilation in critically ill children: a two-center retrospective cohort study. Crit Care. 2011 Jun;15(3):R146.

2. Kashani K, Shao M, Li G, Williams AW, Rule AD, Kremers WK, et al. No increase in the incidence of acute kidney injury in a population-based annual temporal trends epidemiology study. Kidney Int. 2017 Sep;92(3):721–8.

3. Ahmed A, Vairavan S, Akhoundi A, Wilson G, Chiofolo C, Chbat N, et al. Development and validation of electronic surveillance tool for acute kidney injury: a retrospective analysis. J Crit Care. 2015 Oct;30(5):988–93.

4. Závada J, Hoste E, Cartin-Ceba R, Calzavacca P, Gajic O, Clermont G, et al. A comparison of three methods to estimate baseline creatinine for RIFLE classification. Nephrol Dial Transpl. 2010 Dec;25(12):3911–8.

5. Siew ED, Davenport A. The growth of acute kidney injury: a rising tide or just closer attention to detail? Kidney Int. 2015 Jan;87(1):46–61.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3