Aloe-Emodin Relieves High-Fat Diet Induced QT Prolongation via MiR-1 Inhibition and IK1 Up-Regulation in Rats

Author:

Bai Yan,Su Zhenli,Sun Hanqi,Zhao Wei,Chen Xue,Hang Pengzhou,Zhu Wenliang,Du Zhimin

Abstract

Background/Aims: High-fat diet (HFD) causes cardiac electrical remodeling and increases the risk of ventricular arrhythmias. Aloe-emodin (AE) is an anthraquinone component isolated from rhubarb and has a similar chemical structure with emodin. The protective effect of emodin against cardiac diseases has been reported in the literature. However, the cardioprotective property of AE is still unknown. The present study investigated the effect of AE on HFD-induced QT prolongation in rats. Methods: Adult male Wistar rats were randomly divided into three groups: control, HFD, and AE-treatment groups. Normal diet was given to rats in the control group, high-fat diet was given to rats in HFD and AE-treatment groups for a total of 10 weeks. First, HFD rats and AE-treatment rats were fed with high-fat diet for 4 weeks to establish the HFD model. Serum total cholesterol and triglyceride levels were measured to validate the HFD model. Afterward, AE-treatment rats were intragastrically administered with 100 mg/kg AE each day for 6 weeks. Electrocardiogram monitoring and whole-cell patch-clamp technique were applied to examine cardiac electrical activity, action potential and inward rectifier K+ current (IK1), respectively. Neonatal rat ventricular myocytes (NRVMs) were subjected to cholesterol and/or AE. Protein expression of Kir2.1 was detected by Western blot and miR-1 level was examined by real-time PCR in vivo and in vitro, respectively. Results: In vivo, AE significantly shortened the QT interval, action potential duration at 90% repolarization (APD90) and resting membrane potential (RMP), which were markedly elongated by HFD. AE increased IK1 current and Kir2.1 protein expression which were reduced in HFD rats. Furthermore, AE significantly inhibited pro-arrhythmic miR-1 in the hearts of HFD rats. In vitro, AE decreased miR-1 expression levels resulting in an increase of Kir2.1 protein levels in cholesterol-enriched NRVMs. Conclusions: AE prevents HFD-induced QT prolongation by repressing miR-1 and upregulating its target Kir2.1. These findings suggest a novel pharmacological role of AE in HFD-induced cardiac electrical remodeling.

Publisher

S. Karger AG

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3