Evaluating the Efficacy of Polyglycolic Acid-Loading Tetrandrine Nanoparticles in the Treatment of Dry Eye

Author:

Li Tao,Tang Juan,Wu Xiao,Zhang Yu,Du Yangrui,Fang Qilin,Li Jiaman,Du Zhiyu

Abstract

<b><i>Introduction:</i></b> Dry eye disease (DED) is a multifactor-induced disease accompanied by increased osmolarity of the tear film and inflammation of the ocular surface. Traditional anti-inflammation agent corticosteroids applied in DED treatment could result in high intraocular pressure, especially in long-term treatment. Therefore, we explored a nano drug that aimed to block the formation pathway of DED which had anti-inflammatory, sustained release, and good biocompatibility characteristics in this study. <b><i>Methods:</i></b> We prepared a novel nanomedicine (Tet-ATS@PLGA) by the thin film dispersion-hydration ultrasonic method and detected its nanostructure, particle size, and zeta potential. Flow cytometry was used to detect the cell survival rate of each group after 24 h of drug treatment on inflammed Statens Seruminstitut Rabbit Corneal (SIRC) cells. Observed and recorded corneal epithelial staining, tear film rupture time, and Schirmer test to detect tear secretion on the ocular surface of rabbits. The corneal epithelial thickness, morphology, and number of bulbar conjunctival goblet cells were recorded by H&amp;E staining. Finally, we detected the expression of VEGF, IL-1β, PGE<sub>2</sub>, and TNF-α by cellular immunofluorescence staining and enzyme-linked immunosorbent assay (ELISA). <b><i>Results:</i></b> The encapsulation efficiency and drug loading of Tet-ATS@PLGA were 79.85% and 32.47%, respectively. At eye surface temperature, Tet can easily release from Tet-ATS@PLGA while that it was difficult to release at storage temperature and room temperature. After 2 weeks medication, Tet-ATS@PLGA can effectively improve the tear film rupture time and tear secretion time in a DED model (<i>p</i> &lt;0.05). Compared with the normal group (62.34 ± 4.86 mm), the thickness of corneal epithelium in ATS (29.47 ± 3.21 mm), Tet-ATS (46.23 ± 2.87 mm), and Tet-ATS@PLGA (55.76 ± 3.95 mm) gradually increased. Furthermore, the flow cytometry indicated that Tet-ATS@PLGA can effectively promote the apoptosis of inflammatory SIRC cells, and the cellular immunofluorescence and ELISA experiments showed that the expression intensity of inflammatory factors such as VEGF, IL-1β, PGE<sub>2</sub>, and TNF-α decreased in this process. Interestingly, Tet also had the effect of reducing intraocular pressure. <b><i>Conclusion:</i></b> Tet-ATS@PLGA can effectively promote the apoptosis of inflammatory corneal epithelial cells, thus inhibiting the expression of inflammatory factors to block the formation of DED and improve the secretion of tear on the ocular surface.

Publisher

S. Karger AG

Subject

Cellular and Molecular Neuroscience,Sensory Systems,Ophthalmology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3