Effects of Curcumin on Epidermal Growth Factor in Proliferative Vitreoretinopathy

Author:

Ren Yan-xin,Ma Jing-xue ,Zhao Feng,An Jian-bin,Geng Yu-xin,Liu Li-ya

Abstract

Background/Aims: Proliferative vitreoretinopathy (PVR) is a common refractory eye disease that causes blindness and occurs after retinal detachment or retinal reattachment. Epidermal growth factor (EGF) has been shown to play an important role in the migration and proliferation of retinal pigment epithelium (RPE) cells, which promote PVR. Curcumin inhibits RPE cell proliferation, but it is not known whether it participates in the formation of PVR. Curcumin regulates the biological functions of EGF, which plays important roles in the development of PVR. This study aimed to evaluate the effect of curcumin on the regulation of EGF in PVR. Methods: Rabbit RPE cells were cultured, and EGF expression was detected by immunocytochemistry. MTT assay was conducted to determine cell proliferation induced by different concentrations of EGF. Immunocytochemical staining was used to detect EGF expression after treatment with curcumin at varying concentrations. Real-time PCR (RT-PCR) and western blot analysis were used to detect the concentrations of EGF mRNA and protein after treatment with curcumin. After RPE cells and curcumin were injected into experimental rabbit eyes, the cornea, aqueous humor, lens, and vitreous opacity were observed and recorded simultaneously by indirect ophthalmoscopy, fundus color photography, and B-ultrasonography. The vitreous body was extracted, and the EGF content in the vitreous humor was measured by enzyme-linked immunosorbent assay (ELISA). Results: At each time point (24, 48, and 72 h), cell proliferation gradually increased with increasing EGF concentrations (0, 3, 6, and 9 ng/mL) in a dose-dependent manner. Cell proliferation between EGF concentrations of 9 and 12 ng/mL were no different, which suggested that 9 ng/mL EGF was the best concentration to use to stimulate RPE cell proliferation in vitro. Under all EGF concentrations (0, 3, 6, 9, and 12 ng/mL), RPE cell proliferation increased with time (from 24 to 72 h), suggesting a time–effect relationship. Curcumin downregulated EGF expression in RPE cells, which also indicated time–effect and dose–effect relationships. The best curcumin concentration for the inhibition of EGF expression was 15 µg/mL. RT-PCR and western blot analyses indicated that the EGF mRNA and expression of the protein in RPE cells treated with curcumin significantly decreased with time. Ocular examinations revealed that the vitreous opacity was lower and the proliferative membrane was thinner in the curcumin group compared with the control group. The PVR grade and the incidence of retinal detachment were significantly lower in the experimental group than in the control group. ELISA results showed that the EGF content in vitreous humor was higher in the control group than in the curcumin group. The curcumin and control groups were significantly different at each time point. Conclusion: Curcumin inhibited RPE cell proliferation by downregulating EGF and thus effectively inhibited the initiation and development of PVR.

Publisher

S. Karger AG

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3