Analgesic Activity of Synaptamide in a Rat Sciatic Nerve Chronic Constriction Injury Model

Author:

Starinets Anna,Tyrtyshnaia Anna,Kipryushina Yulia,Manzhulo Igor

Abstract

At present, there is a growing interest in the study of the neurotropic activity of polyunsaturated fatty acid ethanolamides (N-acylethanolamines). N-docosahexaenoylethanolamine (DHEA), or synaptamide, an endogenous metabolite of docosahexaenoic acid, is a promising compound with anti-inflammatory activity. The results of this study demonstrate that synaptamide, when administered subcutaneously (4 mg/kg/day, 35 days), promotes a decrease in cold allodynia and mechanical hyperalgesia in a rat sciatic nerve chronic constriction injury (CCI) model. After CCI, synaptamide treatment enhanced the remyelination process in the site of sciatic nerve injury (33.4 ± 1.1% in the CCI+Syn group, compared to 28.4 ± 0.9% in the CCI group). Further, synaptamide suppressed the CCI-induced increase in the activity of microglia (13.1 ± 0.5% in CCI+Syn, compared to 15.3 ± 0.7% in the CCI group) and the number of nitric oxide synthase-positive neurons (58,307 ± 5,206 cells/mm<sup>3</sup> in CCI+Syn, compared to 80,288 ± 4,287 cells/mm<sup>3</sup> in the CCI group) in the dorsal horns of the spinal cord, and also reduced the concentration of interleukin 1 beta in the spinal cord (169.3 ± 4 pg/mg of protein in CCI+Syn, compared to 236.9 ± 9.3 pg/mg of protein in CCI group) 35 days after surgery. Synaptamide treatment resulted in decrease of reactive astrogliosis in the spinal cord dorsal horns to 20.8 ± 1.3%, which occurred simultaneously with a decrease in the substance P (SP) level (9.8 ± 0.5%) compared to vehicle-treated animals (30.2 ± 2.2% and 13.4 ± 0.9% of astroglia and SP staining area, respectively). In addition, synaptamide increased superoxide dismutase activity up to 68.6 ± 0.8% (control 50.6 ± 0.9%) in astrocyte culture. Thus, synaptamide provides anti-inflammatory and neuroprotective effects in both peripheral and central nervous system after sciatic nerve injury.

Publisher

S. Karger AG

Subject

Histology,Anatomy

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3