KYA1797K, a Novel Small Molecule Destabilizing β-Catenin, Is Superior to ICG-001 in Protecting against Kidney Aging

Author:

Zhu Mingsheng,Ling Xian,Zhou Shan,Meng PingORCID,Chen Qiyan,Chen Shuangqin,Shen Kunyu,Xie Chao,Kong Yaozhong,Wang Maosheng,Zhou LiliORCID

Abstract

<b><i>Introduction:</i></b> Aged kidney is characterized by mitochondrial dysfunction, cellular senescence, and fibrogenesis. The activation of Wnt/β-catenin signaling plays an important role in the initiation of kidney aging. However, the inhibiting strategies have not been discovered in detail. Here, we compared the therapeutic effects of two β-catenin inhibitors, KYA1797K and ICG-001, to assess their superiority. <b><i>Methods:</i></b> Two-month-old male C57BL/6 mice which had undergone unilateral nephrectomy and received D-galactose (D-gal) injection were co-treated with KYA1797K or ICG-001 at 10 mg/kg/day for 4 weeks. Human proximal renal tubular cells were treated with D-gal and KYA1797K/ICG-001 to compare their effects. <b><i>Results:</i></b> Compared with ICG-001, which inhibits β-catenin pathway through blocking the binding of β-catenin and cAMP response element-binding protein (CREB)-binding protein (CBP), KYA1797K, a novel small molecule destabilizing β-catenin through activating Axin-GSK3β complex, possesses the superior effects on protecting against kidney aging. In D-gal-treated accelerated aging mice, KYA1797K could greatly inhibit β-catenin pathway, preserve mitochondrial homeostasis, repress cellular senescence, and retard age-related kidney fibrosis. In cultured proximal tubular cells, KYA1797K shows a better effect on inhibiting cellular senescence and could better suppress mitochondrial dysfunction and ameliorate the fibrotic changes, at the same dose as that in ICG-001. <b><i>Conclusion:</i></b> These results show that effectively eliminating β-catenin is a necessity to target against age-related kidney injury, suggesting the multiple transcriptional regulation of β-catenin in kidney aging besides T-cell factor/lymphoid enhancer-binding factor family of transcription factors (TCF/LEF-1).

Publisher

S. Karger AG

Subject

Materials Chemistry

Reference53 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3