Three-Dimensional Cell Culture Scaffold Supports Capillary-Like Network Formation by Endothelial Cells Derived from Porcine-Induced Pluripotent Stem Cells

Author:

Liao Yu-Jing,Chen Yi-Shiou,Lin Yu-Ching,Yang Jenn-Rong

Abstract

<b><i>Introduction:</i></b> Endothelial cells (EC) can be generated from porcine-induced pluripotent stem cells (piPSC), but poor efficiency in driving EC differentiation hampers their application and efficacy. Additionally, the culture of piPSC-derived EC (piPSC-EC) on three-dimensional (3D) scaffolds has not been fully reported yet. Here, we report a method to improve the generation of EC differentiation from piPSC and to facilitate their culture on 3D scaffolds, providing a potential resource for in vitro drug testing and the generation of tissue-engineered vascular grafts. <b><i>Methods:</i></b> We initiated the differentiation of piPSC into EC by seeding them on laminin 411 and employing a three-stage protocol, which involved the use of distinct EC differentiation media supplemented with CHIR99021, BMP4, VEGF, and bFGF. <b><i>Results:</i></b> piPSC-EC not only expressed EC markers such as CD31, VE-cadherin, and von Willebrand factor (vWF) but also exhibited an upregulation of EC marker genes, including CD31, CD34, VEGFR2, VE-cadherin, and vWF. They exhibited functional characteristics similar to those of porcine coronary artery endothelial cells (PCAEC), such as tube formation and Dil-Ac-LDL uptake. Furthermore, when cultured on 3D scaffolds, piPSC-EC developed a 3D morphology and were capable of forming an endothelial layer and engineering capillary-like networks, though these lacked lumen structures. <b><i>Conclusion:</i></b> Our study not only advances the generation of EC from piPSC through an inhibitor and growth factor cocktail but also provides a promising approach for constructing vascular network-like structures. Importantly, these findings open new avenues for drug discovery in vitro and tissue engineering in vivo.

Publisher

S. Karger AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3