The Retina of Ansorge's Cusimanse (Crossarchus ansorgei): Number, Topography and Convergence of Photoreceptors and Ganglion Cells in Relation to Ecology and Behavior

Author:

Coimbra João Paulo,Kaswera-Kyamakya Consolate,Gilissen Emmanuel,Manger Paul R.,Collin Shaun P.ORCID

Abstract

The family Herpestidae (cusimanses and mongooses) is a monophyletic radiation of carnivores with remarkable variation in microhabitat occupation and diel activity, but virtually nothing is known about how they use vision in the context of their behavioral ecology. In this paper, we measured the number and topographic distribution of neurons (rods, cones and retinal ganglion cells) and estimated the spatial resolving power of the eye of the diurnal, forest-dwelling Ansorge's cusimanse (Crossarchus ansorgei). Using retinal wholemounts and stereology, we found that rods are more numerous (42,500,000; 92%) than cones (3,900,000; 8%). Rod densities form a concentric and dorsotemporally asymmetric plateau that matches the location and shape of a bright yellow tapetum lucidum located within the dorsal aspect of the eye. Maximum rod density (340,300 cells/mm2) occurs within an elongated plateau below the optic disc that corresponds to a transitional region between the tapetum lucidum and the pigmented choroid. Cone densities form a temporal area with a peak density of 44,500 cells/mm2 embedded in a weak horizontal streak that matches the topographic distribution of retinal ganglion cells. Convergence ratios of cones to retinal ganglion cells vary from 50:1 in the far periphery to 3:1 in the temporal area. With a ganglion cell peak density of 13,400 cells/mm2 and an eye size of 11 mm in axial length, we estimated upper limits of spatial resolution of 7.5-8 cycles/degree, which is comparable to other carnivores such as hyenas. In conclusion, we suggest that the topographic retinal traits described for Ansorge's cusimanse conform to a presumed carnivore retinal blueprint but also show variations that reflect its specific ecological needs.

Publisher

S. Karger AG

Subject

Behavioral Neuroscience,Developmental Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3