Semaphorin 4D Promotes Osteoclast Formation but Inhibits Osteoblast Formation: Implication in Bisphosphonate-Related Osteonecrosis of the Jaw

Author:

Liu Lili,Mu Hong,Pang Ying,Liu Jingbo,Liu Chunsheng

Abstract

Introduction: Bisphosphonates are widely used for the treatment of osteoporosis, which could cause osteonecrosis of the jaw (also known as bisphosphonate-related osteonecrosis of the jaw [BRONJ]). Currently, there is no effective treatment for BRONJ. Here, we investigated the role of human recombinant semaphorin 4D (Sema4D) in BRONJ in vitro. Methods: MG-63 and RAW264.7 cells were used to determine the effects of Sema4D on BRONJ. Osteoclast and osteoblast were differentiated by treatment with 50 ng/mL RANKL for 7 days. In vitro BRONJ model was induced by treatment with ZOL (2.5 μ<sc>m</sc>). The development of osteoclasts and osteoblasts was evaluated using ALP activity and ARS staining. qRT-PCR was used to measure the genes relative expression involved in the development of osteoclasts and osteoblasts. In addition, ZOL decreased TRAP-positive area; TRAP protein and mRNA expression were determined using Western blot and qTR-PCR. Results: ZOL treatment remarkedly suppressed Sema4D expression in RAW264.7 cells. Moreover, ZOL reduced TRAP-positive area and TRAP protein and mRNA expression. In parallel, genes involved in osteoclast formation were reduced by ZOL treatment. In contrast, osteoclast apoptosis was increased by ZOL treatment. Recombinant human Sema4D significantly abolished these effects of ZOL. In addition, ALP activity was reduced by recombinant human Sema4D. Discussions: Genes involved in osteoblast formation were decreased by recombinant human Sema4D in a dose-dependent manner. We demonstrated that ZOL treatment inhibited Sema4D expression in RAW264.7 cells. Conclusion: Recombinant human Sema4D treatment can effectively alleviate ZOL-induced inhibition of osteoclast formation and apoptosis and promote osteoblast formation.

Publisher

S. Karger AG

Subject

Pharmacology,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3