Rationale for a New Classification of Solutes of Interest in Chronic Kidney Disease and Hemodialysis

Author:

Reis Thiago,Hutchison Colin,de Assis Rocha Neves FranciscoORCID,Zawadzki Bruno,Zanella Monica,Ronco Claudio,Rosner Mitchell H.

Abstract

A hallmark of chronic kidney disease is the retention of solutes that normally are eliminated by the kidneys. The current classification defines uremic toxins based on molecular weight and protein affinity. The retention of solutes is already detected in the early stages of the disease when patients are pauci-symptomatic or asymptomatic but the role of therapies to retard the loss of kidney function in patients with chronic kidney disease (e.g., modulators of the renin-angiotensin-aldosterone system, sodium-glucose cotransporter inhibitors) in reducing uremic toxins is poorly understood. Most of the research evaluating the impact of therapies to lower serum concentrations of those toxic compounds is carried out in patients with kidney failure already undergoing kidney replacement therapy. The removal of those molecules relies in physicochemical mass transfer phenomena, i.e., adsorption, diffusion, and convection. In the past 2 decades, the rise and broad adoption of blood purification strategies with enhanced convective properties, such as high-volume online hemodiafiltration and expanded hemodialysis, considerably amplified the ability to mechanically extract middle molecules (molecular weight >0.5 kDa) from the blood compartment. Nonetheless, the classification of uremic toxins has not evolved in parallel with dialysis advancements. Mounting evidence demonstrates the link between middle molecules with uremic symptoms, cardiovascular and mortality risks. An urgent need for updating the classification exists. Defining the causative relationship between specific solutes and specific clinical outcomes will promote the development of targeted therapies. In parallel, the inclusion of new pertinent dimensions to the classification like the influence of new dialysis membranes, sorbents, and intestinal chelators in the concentration of uremic toxins would improve the understanding of the pathogenesis of chronic kidney disease, setting the pace for future research in nephrology.

Publisher

S. Karger AG

Subject

Nephrology,Hematology,General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Removal of uremic toxin by dialysis, what is the issue?;Kidney Research and Clinical Practice;2023-11-30

2. Kidney Disease Classification Using Machine Learning Approach on DenseNet201 Model using Xray Images;2023 First International Conference on Advances in Electrical, Electronics and Computational Intelligence (ICAEECI);2023-10-19

3. Chronic Kidney Disease Detection Using GridSearchCV Cross Validation Method;2023 International Conference on Recent Advances in Electrical, Electronics & Digital Healthcare Technologies (REEDCON);2023-05-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3