Thermal Response of Epigenetic Genes Informs Turtle Sex Determination with and without Sex Chromosomes

Author:

Radhakrishnan Srihari,Literman Robert,Neuwald Jennifer L.,Valenzuela Nicole

Abstract

Vertebrate sexual fate can be established by environmental cues (e.g., temperature-dependent sex determination, TSD) or by genetic content (genotypic sex determination, GSD). While methylation is implicated in TSD, the influence of broader epigenetic processes in sexual development remains obscure. Here, we investigated for the first time the embryonic gonadal expression of the genome-wide epigenetic machinery in turtles, including genes and noncoding RNAs (ncRNAs) involved in DNA/histone acetylation, methylation, ubiquitination, phosphorylation, and RNAi. This machinery was active and differentially thermosensitive in TSD versus GSD (ZZ/ZW) turtles. Methylation and histone acetylation genes responded the strongest. The results suggest these working hypotheses: (i) TSD might be mediated by epigenetically controlled hormonal pathways (via acetylation, methylation, and ncRNAs), or by (ii) hormonally controlled epigenetic processes, and (iii) key epigenetic events prior to the canonical thermosensitive period may explain differences between TSD and GSD. Novel epigenetic candidate regulators other than methylation were identified, including previously unknown ncRNAs that could potentially mediate gonadogenesis. These findings illuminate the molecular ecology of reptilian sex determination and permitted hypothesis building to help guide future functional studies on the epigenetic transduction of external cues in TSD versus GSD systems.

Publisher

S. Karger AG

Subject

Developmental Biology,Embryology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3