Natural Language Processing to Extract Meaningful Information from a Corpus of Written Knowledge in Breast Cancer: Transforming Books into Data

Author:

Catanuto Giuseppe,Rocco Nicola,Balafa Konstantina,Masannat YazanORCID,Karakatsanis AndreasORCID,Maglia Anna,Barry Peter,Pappalardo Francesco,Nava Maurizio BrunoORCID,Caruso Francesco

Abstract

Introduction: Books and papers are the most relevant source of theoretical knowledge for medical education. New technologies of artificial intelligence can be designed to assist in selected educational tasks, such as reading a corpus made up of multiple documents and extracting relevant information in a quantitative way. Methods: Thirty experts were selected transparently using an online public call on the website of the sponsor organization and on its social media. Six books edited or co-edited by members of this panel containing a general knowledge of breast cancer or specific surgical knowledge have been acquired. This collection was used by a team of computer scientists to train an artificial neural network based on a technique called Word2Vec. Results: The corpus of six books contained about 2.2 billion words for 300d vectors. A few tests were performed. We evaluated cosine similarity between different words. Discussion: This work represents an initial attempt to derive formal information from textual corpus. It can be used to perform an augmented reading of the corpus of knowledge available in books and papers as part of a discipline. This can generate new hypothesis and provide an actual estimate of their association within the expert opinions. Word embedding can also be a good tool when used in accruing narrative information from clinical notes, reports, etc., and produce prediction about outcomes. More work is expected in this promising field to generate “real-world evidence.”

Publisher

S. Karger AG

Subject

Oncology,Surgery

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3