Energy Metabolism in the Bone is Associated with Histomorphometric Changes in Rats with Hyperthyroidism

Author:

Hu Zhuoqing,Du Minqun,Lai Wenxiu,Liang Yanlong,Liu Qin,Mo Yilin,Bei Jiaxin,Li Shuhui,Yang Yajun,Xu Jinrong,Cui Liao

Abstract

Background/Aims: In this study we assessed histomorphometric changes induced by thyroxine (T4) in 3-month-old hyperthyroid male rats and examined whether the potential mechanism of these changes is related to bone changes. Methods: Rats were classified as either hyperthyroid following administration of 250 µg/kg/day freshly prepared T4 by gavage for 2 months or euthyroid following administration of vehicle alone (n = 8 per group). We measured bone mineral density (BMD), bone biomechanical properties, and bone histomorphometric changes. Levels of serum indicators were also measured, and three right femurs from the two groups were selected for proteomic investigation. Results: Compared with the control rats, hyperthyroid rats showed a reduction in the fifth lumbar vertebral BMD as well as in the entire femoral BMD (p = 0.033 and 0.026, respectively). Histomorphometric analysis of the proximal tibial metaphysis showed that the percentage of the trabecular area, trabecular number, and percentage of the cortical bone area in the hyperthyroid rats significantly decreased compared with those of the control rats. Conversely, bone formation rate (per unit of bone surface and bone volume), percentage of the osteoclast perimeter, trabecular separation, and endosteal mineral apposition rate in the hyperthyroid rats significantly increased compared with the control rats (all p < 0.05). Except for stiffness (p = 0.24), all bone biomechanical properties of the femur showed a significant decreasing trend in the hyperthyroid rats versus the control rats (all p < 0.05). Serum levels of osteocalcin, alkaline phosphatase, terminal telopeptides of type β collagen, and tartrate-resistant acid phosphatase were higher in the hyperthyroid rats than in the control rats (all p < 0.05). Using isobaric tags for relative and absolute quantification (iTRAQ), the expression levels of 1,310 proteins were found to be significantly different between the hyperthyroid and control rats (711 proteins were upregulated and 599 were downregulated in hyperthyroid rats). Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses showed that most of the enzymes in the glycolysis–tricarboxylic acid (TCA) cycle–oxidative phosphorylation signalling pathway were upregulated in hyperthyroid rats, and seven differentially expressed proteins were selected to verify the iTRAQ results using western blotting. Conclusion: Energy metabolism via the glycolysis–TCA cycle–oxidative phosphorylation pathway is positively associated with T4-induced bone histomorphometric changes in rats.

Publisher

S. Karger AG

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3