Integrin β1, Osmosensing, and Chemoresistance in Mouse Ehrlich Carcinoma Cells

Author:

Sørensen Belinda Halling,Rasmussen Line Jee Hartmann,Broberg Bjørn Sindballe,Klausen Thomas Kjær,Sauter Daniel Peter Rafael,Lambert Ian Henry,Aspberg Anders,Hoffmann Else Kay

Abstract

Background/Aims: Altered expression of the integrin family of cell adhesion receptors has been associated with initiation, progression, and metastasis of solid tumors as well as in the development of chemoresistance. Here, we investigated the role of integrins, in particular integrin β1, in cell volume regulation and drug-induced apoptosis in adherent and non-adherent Ehrlich ascites cell lines. Methods: Adhesion phenotypes were verified by colorimetric cell-adhesion-assay. Quantitative real-time PCR and western blot were used to compare expression levels of integrin subunits. Small interfering RNA was used to silence integrin β1 expression. Regulatory volume decrease (RVD) after cell swelling was studied with calcein-fluorescence-self-quenching and Coulter counter analysis. Taurine efflux was estimated with tracer technique. Caspase assay was used to determine apoptosis. Results: We show that adherent cells have stronger fibronectin binding and a significantly increased expression of integrin α5, αv, and β1 at mRNA and protein level, compared to non-adherent cells. Knockdown of integrin β1 reduced RVD of the adherent but not of the non-adherent cells. Efflux of taurine was unaffected. In contrast to non-adherent, adherent cells exhibited chemoresistance to chemotherapeutic drugs (cisplatin and gemcitabine). However, knockdown of integrin β1 promoted cisplatin-induced caspase activity in adherent cells. Conclusion: Our data identifies integrin β1 as a part of the osmosensing machinery and regulator of cisplatin resistance in adherent Ehrlich cells.

Publisher

S. Karger AG

Subject

Physiology

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3