Reduced Intra- and Inter-Network Functional Connectivity Identified in Patients with Tinnitus with and without Hearing Loss

Author:

Du Haoliang,Chen Jie,Qian Xiaoyun,Ding Xiaoqiong,Zhang Jian,Liu Bin,Yu Chenjie,Li Ao,Gao Xia,Feng Xu

Abstract

<b><i>Introduction:</i></b> The aim of the study was to investigate differences in the intra- and inter-network functional connectivity (FC) of the brain using resting-state functional magnetic resonance imaging (rs-fMRI) in patients with tinnitus, with (T + H) or without hearing loss (T). <b><i>Methods:</i></b> We performed rs-fMRI on 82 participants (21 T, 32 T + H, and 29 healthy controls). An independent component analysis (ICA) was performed to obtain the resting-state networks (RSNs) and calculate the differences in FC. Moreover, we investigated the relationships between networks using functional network connectivity analysis. <b><i>Results:</i></b> We identified nine major RSNs, including the auditory network; default mode network; executive control network (ECN), including the right frontoparietal network and left frontoparietal network (LFPN); somatomotor network (SMN); dorsal attention network; ventral attention network; salience network (SN); and visual network (VN). These RSNs were extracted in all groups using ICA. Compared with that in the control group, we observed reduced FC between the LFPN and VN in the T group and between the LFPN and SN in the T + H group. The inter-network connectivity analysis revealed decreased network interactions in the SMN (IC 22)-ECN (IC 2), SMN (IC 22)-VN (IC 8), and VN (IC 14)-SN (IC 3) connections in the T + H group, compared with the healthy control group. Furthermore, we observed significantly decreased network interactions in the SMN (IC 22)-VN (IC 8) in the T group. <b><i>Conclusions:</i></b> Our results indicated abnormalities within the brain networks of the T and T + H groups, including the SMN, ECN, and VN, compared with the control group. Furthermore, both T and T + H groups demonstrated reduced FC between the LFPN, VN, and SMN. There were no significant differences between the T and the T + H groups. Furthermore, we observed reduced FC between the right olfactory cortex and the orbital part of the right middle frontal gyrus, right precentral gyrus, left dorsolateral superior frontal gyrus, and right triangular part of the inferior frontal gyrus within the T and T + H groups. Thus, disruptions in brain regions responsible for attention, stimulus monitoring, and auditory orientation contribute to tinnitus generation.

Publisher

S. Karger AG

Subject

Speech and Hearing,Sensory Systems,Otorhinolaryngology,Physiology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3