Melatonin Alters Innate Immune Function in Infants with Neonatal Encephalopathy

Author:

Aslam Saima,O'Dea Mary,Kelly Lynne A.,O'Neill Amanda,McKenna Ellen,Hurley Tim,Branagan AoifeORCID,O'Driscoll DavidORCID,Normile Caoimhe,Saleemi Shahid,Sweetman Deirdre,Vavasseur Claudine,Murphy John,Donoghue Veronica,Watson WilliamORCID,Molloy Eleanor J.ORCID

Abstract

Introduction: Melatonin has been suggested an adjunctive therapy in neonatal encephalopathy (NE). Melatonin reduces oxidative stress and neutrophil activation; however, the immunological effects in NE have not been studied. Methods: Infants with NE and neonatal controls were prospectively recruited. Whole blood was sampled in the first week of life. Following endotoxin and or melatonin treatment, diurnal variation was measured by RT PCR for circadian rhythm genes (brain and Muscle Arnt-Like protein [BMAL1], circadian locomotor output cycles kaput [CLOCK], Nuclear Receptor Subfamily 1 Group D Member 2 [REV Erβ], and cryptochrome circadian clock [CRY]). Neutrophil and monocyte cell surface markers of activation CD11b, reactive oxygen intermediates (ROIs), and Toll-like receptor (TLR)-4 were also examined by flow cytometry in matching samples. Results: Serum and RNA samples from forty infants were included (controls n = 20; NE n = 20) over the first week of life. Melatonin reduced neutrophil CD11b and TLR-4 expression in response to LPS in infants with NE compared to controls. There were no differences in ROIs. BMAL1 and CLOCK baseline gene expression levels were similar. BMAL1 was significantly decreased with LPS stimulation in NE. There was no significant diurnal variation in melatonin, neutrophil, and monocyte function or circadian genes. Conclusions: Melatonin alters immune function ex vivo in infants with NE. Infants with NE have altered immune circadian responses following LPS stimulation, which have potential for modulation.

Publisher

S. Karger AG

Subject

Developmental Biology,Pediatrics, Perinatology and Child Health

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3