Dipeptide (Methionyl-Methionine) Transport and Its Effect on β-Casein Synthesis in Bovine Mammary Epithelial Cells

Author:

Wang Caihong,Zhao Fengqi,Liu Jianxin,Liu Hongyun

Abstract

Background/Aims: The aim of this study was to investigate the transport properties and utilization of methionyl-methionine dipeptide (Met-Met) in β-casein (β-CN) synthesis in bovine mammary epithelial cells (BMECs). Methods: The transport properties were studied for the effects of time, pH, concentration, temperature and inhibitors using Met-Met-FITC in BMECs. BMECs were treated with different concentrations of Met-Met (0, 20, 40, 80, 120 and 160 µg/ml). In several experiments, the cells were treated with Janus kinase 2 (JAK2) inhibitor (tyrphostin AG-490, 50 µM) and mammalian target of rapamycin (mTOR) inhibitor (rapamycin, 100 ng/ml). Results: The uptake of Met-Met-FITC by BMECs was rapid during the first fifteen minutes and became saturated after 15 minutes. The transport of Met-Met-FITC in BMECs exhibited a Michaelis constant of 52.4 µM and maximum transport velocity of 14.8 pmol/min/mg protein. The uptake of Met-Met-FITC in BMECs was pH-dependent, peaked at pH 6.5 and was significantly inhibited by other peptides, including Met-Lys, Lys-Lys, Gly-Met, Gly-Leu and Met-Leu. Knocking down the peptide transporter 2 (PepT2) with small interference RNA markedly decreased Met-Met-FITC uptake. Met-Met concentration-dependently increased the PepT2 expression and β-CN synthesis in BMECs with an optimal concentration of 80 µg/ml. At 80 µg/ml, Met-Met also enhanced the cell viability and cyclin D1 expression and promoted cell cycle transition from G1 phase to S phase. In addition, 80 µg/ml Met-Met increased the mRNA abundance of JAK2 and signal transducer and activator of transcription 5 (STAT5) and enhanced the phosphorylation of JAK2, STAT5, mTOR, p70 ribosomal S6 kinase 1 and eukaryotic initiation factor 4E binding protein 1. The inhibition of JAK2 and mTOR significantly decreased Met-Met-induced increase in cell viability and β-CN synthesis in BMECs. Conclusion: Our data elucidated the properties of peptide transporter and its effect on β-CN synthesis in BMECs. Met-Met, taken up by PepT2, enhances cell proliferation and promotes β-CN synthesis by activating JAK2-STAT5 and mTOR signaling pathways in BMECs.

Publisher

S. Karger AG

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3