Learning Curves during Implementation of Robotic Stereotactic Surgery

Author:

Hines Kevin,Smit Rupert D.,Vinjamuri Shreya,Momin Arbaz A.,Fayed Islam,Ebede Kenechi,Atik Ahmet F.,Matias Caio Marconato,Sharan Ashwini,Wu Chengyuan

Abstract

<b><i>Introduction:</i></b> Adoption of robotic techniques is increasing for neurosurgical applications. Common cranial applications include stereoelectroencephalography (sEEG) and deep brain stimulation (DBS). For surgeons to implement robotic techniques in these procedures, realistic learning curves must be anticipated for surgeons to overcome the challenges of integrating new techniques into surgical workflow. One such way of quantifying learning curves in surgery is cumulative sum (CUSUM) analysis. <b><i>Methods:</i></b> Here, the authors present retrospective review of stereotactic cases to perform a CUSUM analysis of operative time for robotic cases at a single institution performed by 2 surgeons. The authors demonstrate learning phase durations of 20 and 16 cases in DBS and sEEG, respectively. <b><i>Results:</i></b> After plateauing of operative time, mastery phases started at cases 132 and 72 in DBS and sEEG. A total of 273 cases (188 DBS and 85 sEEG) were included in the study. The authors observed a learning plateau concordant with change of location of surgery after exiting the learning phase. <b><i>Conclusion:</i></b> This study demonstrates the learning curve of 2 stereotactic workflows when integrating robotics as well as being the first study to examine the robotic learning curve in DBS via CUSUM analysis. This work provides data on what surgeons may expect when integrating this technology into their practice for cranial applications.

Publisher

S. Karger AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3