Mechanism of miRNA-141-3p in Calcium Oxalate-Induced Renal Tubular Epithelial Cell Injury via NLRP3-Mediated Pyroptosis

Author:

Gan Xiu-Guo,Wang Zhi-Hao,Xu Hai-Tao

Abstract

<b><i>Background/Aims:</i></b> Renal calculi represent a prevalent disorder associated with mineral deposition in renal calyces and the pelvis. Aberrant microRNA (miRNA) expression is implicated in renal injury. This study investigated the mechanism of miR-141-3p in calcium oxalate (CaOx) crystal-induced renal tubular epithelial cell (RTEC) injury. <b><i>Methods:</i></b> Human RTECs HK-2 cells were treated with CaOx crystals to induce RTEC injury. Cell viability was evaluated using Cell Counting Kit-8 assay, and apoptosis was measured using flow cytometry. The contents of lactate dehydrogenase (LDH), malondialdehyde (MDA), superoxide dismutase (SOD), interleukin (IL)-1β, and IL-18 were measured using enzyme-linked immunosorbent assay kits. The expressions of NLRP3, cleaved caspase-1, and GSDMD-N were detected using Western blot. miR-141-3p and NLRP3 expressions were determined using reverse transcription quantitative polymerase chain reaction. The binding of miR-141-3p and NLRP3 was validated using a dual-luciferase assay. The role of NLRP3 in the protection of miR-141-3p on RTEC injury was verified using functional rescue experiments. <b><i>Results:</i></b> CaOx crystals induced RTEC injury, manifested as attenuated cell viability, enhanced apoptosis, elevated intracellular LDH and MDA levels, and decreased SOD level. Pyroptosis of RTECs was enhanced by CaOx crystal induction, evidenced by elevated expressions of cleaved caspase-1, GSDMD-N, IL-1β, and IL-18. miR-141-3p expression was reduced in CaOx crystal-induced RTECs. miR-141-3p overexpression alleviated CaOx crystal-induced RTEC injury and suppressed pyroptosis of RTECs. miR-141-3p bound to NLRP3 and thereby repressed NLRP3 expression. NLRP3 overexpression reversed the protective effect of miR-141-3p overexpression on RTECs. <b><i>Conclusion:</i></b> miR-141-3p repressed NLRP3-mediated pyroptosis by suppressing NLRP3 expression, thus protecting CaOx crystal-induced RTEC injury.

Publisher

S. Karger AG

Subject

Cardiology and Cardiovascular Medicine,Nephrology,Cardiology and Cardiovascular Medicine,Nephrology

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3