Author:
Carmona Susy Beatriz,Moreno Fabián,Bolívar Francisco,Gosset Guillermo,Escalante Adelfo
Abstract
Laboratory and industrial cultures of <i>Escherichia coli</i> employ media containing glucose which is mainly transported and phosphorylated by the phosphotransferase system (PTS). In these strains, 50% of the phosphoenolpyruvate (PEP), which results from the catabolism of transported glucose, is used as a phosphate donor for its phosphorylation and translocation by the PTS. This characteristic of the PTS limits the production of industrial biocommodities that have PEP as a precursor. Furthermore, when <i>E. coli</i> is exposed to carbohydrate mixtures, the PTS prevents expression of catabolic and non-PTS transport genes by carbon catabolite repression and inducer exclusion. In this contribution, we discuss the main strategies developed to overcome these potentially limiting effects in production strains. These strategies include adaptive laboratory evolution selection of PTS<sup>-</sup> Glc<sup>+</sup> mutants, followed by the generation of strains that recover their ability to grow with glucose as a carbon source while allowing the simultaneous consumption of more than one carbon source. We discuss the benefits of using alternative glucose transport systems and describe the application of these strategies to <i>E. coli</i> strains with specific genetic modifications in target pathways. These efforts have resulted in significant improvements in the production of diverse biocommodities, including aromatic metabolites, biofuels and organic acids.
Subject
Molecular Biology,Applied Microbiology and Biotechnology,Microbiology,Biotechnology
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献