Temperature-Induced Sex Reversal in Reptiles: Prevalence, Discovery, and Evolutionary Implications

Author:

Whiteley Sarah L.,Castelli Meghan A.,Dissanayake Duminda S.B.,Holleley Clare E.ORCID,Georges Arthur

Abstract

Sex reversal is the process by which an individual develops a phenotypic sex that is discordant with its chromosomal or genotypic sex. It occurs in many lineages of ectothermic vertebrates, such as fish, amphibians, and at least one agamid and one scincid reptile species. Sex reversal is usually triggered by an environmental cue that alters the genetically determined process of sexual differentiation, but it can also be caused by exposure to exogenous chemicals, hormones, or pollutants. Despite the occurrence of both temperature-dependent sex determination (TSD) and genetic sex determination (GSD) broadly among reptiles, only 2 species of squamates have thus far been demonstrated to possess sex reversal in nature (GSD with overriding thermal influence). The lack of species with unambiguously identified sex reversal is not necessarily a reflection of a low incidence of this trait among reptiles. Indeed, sex reversal may be relatively common in reptiles, but little is known of its prevalence, the mechanisms by which it occurs, or the consequences of sex reversal for species in the wild under a changing climate. In this review, we present a roadmap to the discovery of sex reversal in reptiles, outlining the various techniques that allow new occurrences of sex reversal to be identified, the molecular mechanisms that may be involved in sex reversal and how to identify them, and approaches for assessing the impacts of sex reversal in wild populations. We discuss the evolutionary implications of sex reversal and use the central bearded dragon (<i>Pogona vitticeps</i>) and the eastern three-lined skink (<i>Bassiana duperreyi</i>) as examples of how species with opposing patterns of sex reversal may be impacted differently by our rapidly changing climate. Ultimately, this review serves to highlight the importance of understanding sex reversal both in the laboratory and in wild populations and proposes practical solutions to foster future research.

Publisher

S. Karger AG

Subject

Developmental Biology,Embryology,Endocrinology, Diabetes and Metabolism

Reference54 articles.

1. Antonio-Rubio NR, Villagrán-SantaCruz M, Santos-Vázquez A, Moreno-Mendoza N. Gonadal morphogenesis and sex differentiation in the oviparous lizard, Sceloporus aeneus (Squamata: Phrynosomatidae). Zoomorphology. 2015;134(2):279–89.

2. Ayers KL, Davidson NM, Demiyah D, Roeszler KN, Grützner F, Sinclair AH, et al. RNA sequencing reveals sexually dimorphic gene expression before gonadal differentiation in chicken and allows comprehensive annotation of the W-chromosome. Genome Biol. 2013;14(3):R26.

3. Ballen CJ, Shine R, Andrews RM, Olsson M. Multifactorial sex determination in chameleons. J Herpetol. 2016;50(4):548–51.

4. Bidon T, Schreck N, Hailer F, Nilsson MA, Janke A. Genome-wide search identifies 1.9 Mb from the polar bear Y chromosome for evolutionary analyses. Genome Biol Evol. 2015;7(7):2010–22.

5. Bókony V, Kövér S, Nemesházi E, Liker A, Székely T. Climate-driven shifts in adult sex ratios via sex reversals: The type of sex determination matters. Philos Trans R Soc Lond B Biol Sci. 2017;372(1729):20160325.

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3